首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classical constitutive modeling of incompressible hyperelastic materials such as vulcanized rubber involves strain-energy densities that depend on the first two invariants of the strain tensor. The most well-known of these is the Mooney-Rivlin model and its specialization to the neo-Hookean form. While each of these models accurately predicts the mechanical behavior of rubber at moderate stretches, they fail to reflect the severe strain-stiffening and effects of limiting chain extensibility observed in experiments at large stretch. In recent years, several constitutive models that capture the effects of limiting chain extensibility have been proposed. Here we confine attention to two such phenomenological models. The first, proposed by Gent in 1996, depends only on the first invariant and involves just two material parameters. Its mathematical simplicity has facilitated the analytic solution of a wide variety of basic boundary-value problems. A modification of this model that reflects dependence on the second invariant has been proposed recently by Horgan and Saccomandi. Here we discuss the stress response of the Gent and HS models for some homogeneous deformations and apply the results to the fracture of rubber-like materials. Attention is focused on a particular fracture test, namely the trousers test where two legs of a cut specimen are pulled horizontally apart. It is shown that the cut position plays a key role in the fracture analysis, and that the effect of the cut position depends crucially on the constitutive model employed. For stiff rubber-like or biological materials, it is shown that the influence of the cut position is diminished. In fact, for linearly elastic materials, the critical driving force for fracture is independent of the cut position. It is also shown that the limiting chain extensibility models predict finite fracture toughness as the cut position approaches the edge of the specimen whereas classical hyperelastic models predict unbounded toughness in this limit. The results are relevant to the structural integrity of rubber components such as vibration isolators, vehicle tires, earthquake bearings, seals and flexible joints.  相似文献   

2.
Molecular constitutive models for rubber based on non-Gaussian statistics generally involve the inverse Langevin function. Such models are widely used since they successfully capture the typical strain-hardening at large strains. Limiting chain extensibility constitutive models have also been developed on using phenomenological continuum mechanics approaches. One such model, the Gent model for incompressible isotropic hyperelastic materials, is particularly simple. The strain-energy density in the Gent model depends only on the first invariant I 1 of the Cauchy–Green strain tensor, is a simple logarithmic function of I 1 and involves just two material parameters, the shear modulus μ and a parameter J m which measures a limiting value for I 1−3 reflecting limiting chain extensibility. In this note, we show that the Gent phenomenological model is a very accurate approximation to a molecular based stretch averaged full-network model involving the inverse Langevin function. It is shown that the Gent model is closely related to that obtained by using a Padè approximant for this function. The constants μ and J m in the Gent model are given in terms of microscopic properties. Since the Gent model is remarkably simple, and since analytic closed-form solutions to several benchmark boundary-value problems have been obtained recently on using this model, it is thus an attractive alternative to the comparatively complicated molecular models for incompressible rubber involving the inverse Langevin function. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Rubber-like materials and soft tissues exhibit a significant stiffening or hardening in their stress-strain curves at large strains. Considerable progress has been made recently in the phenomenological modeling of this effect within the context of isotropic hyperelasticity. In particular, constitutive models reflecting limiting chain extensibility at the molecular level have been used to accurately capture strain-hardening. Here we generalize such models to isotropic thermoelasticity. We also show that specific non-polynomial strain-energies for both hyperelastic and thermoelastic materials can be obtained on using a modification of a systematic scheme of Rivlin and Signorini. The Rivlin-Signorini method was based on approximation of the strain-energy density function by polynomials whereas here we use the more general class of rational functions to approximate the material response functions. We then propose a simple generalization to thermoelasticity of a constitutive model for incompressible hyperelastic materials reflecting limiting chain extensibility due to Gent (Rubber Chem. Technol. 69 (1996) 59-61). For this new thermoelastic constitutive model we investigate the inhomogeneous deformation problem of axial shear of a circular cylindrical tube.  相似文献   

4.
聚硅氧烷硅胶是一类以Si——O键为主链、硅原子上直接连接有机基团的无色透明高分子聚合物, 因其具有优异的超弹性性能而广泛应用于精密减震结构、柔性电子器件等领域. 在聚硅氧烷硅胶减震结构和柔性电子器件的设计中, 材料在大变形和动态加载下的黏超弹性力学行为的精确描述至关重要. 本文针对该问题进行了系统的研究:首先, 将该硅胶的超弹性和黏弹性行为进行解耦, 确定其黏超弹性本构方程的基本框架;其次, 基于单轴拉压、平面拉伸试验确定其准静态超弹性模型的各项参数;再次, 利用霍普金森压杆冲击试验确定其黏弹性模型的各项参数;在此基础上, 将超弹性和黏弹性模型合并为适用于大应变和大应变率的黏超弹性动态本构模型;最后, 利用落锤冲击试验对该硅胶薄片的冲击变形行为进行了研究, 并利用上述建立的动态本构模型对落锤冲击过程进行了有限元模拟. 结果表明:本文建立的黏超弹性本构模型可有效预测该硅胶在冲击载荷下的力学行为, 从而为聚硅氧烷硅胶减震结构和柔性电子器件的优化设计提供了理论和应用基础.   相似文献   

5.
对聚氨酯橡胶进行了单轴拉伸、单轴压缩和平面拉伸试验,采用常用的超弹性本构模型拟合试验数据,并基于拟合优度、拟合曲线与试验曲线相似性、相对偏差三方面,对拟合效果进行评估.结果表明:采用拟合优度评估,能从总体上反映超弹性本构模型对试验数据的拟合效果,采用拟合曲线与试验数据相似性的对比进行评估,能直观反映超弹性本构模型对试验数据的拟合效果,若同时考虑相对偏差,则可以反映超弹性本构模型与试验数据之间的相对偏差量,更为准确地对超弹性本构模型的拟合效果进行评估.  相似文献   

6.
In this paper, an exponential framework for strain energy density functions of elastomers and soft biological tissues is proposed. Based on this framework and using a self-contained approach that is different from a guesswork or combination viewpoint, a set strain energy density functions in terms of the first and second strain invariants is rebuilt. Among the constructed options for strain energy density, a new exponential and mathematically justified model is examined. This model benefits from the existence of second strain invariant, simplicity, stability of parameters, and the state of being accurate. This model can capture strain softening, strain hardening and is able to differentiate between various deformation-state dependent responses of elastomers and soft tissues undergoing finite deformation. The model has two material parameters and the mathematical formulation is simple to render the possibility of numerical implementations. In order to investigate the appropriateness of the proposed model in comparison to other hyperelastic models, several experimental data for incompressible isotropic materials (elastomers) such as VHB 4905 (polyacrylate rubber), two various silicone rubbers, synthetic rubber neoprene, two different natural rubbers, b186 rubber (a carbon black-filled rubber), Yeoh vulcanizate rubber, and finally porcine liver tissue (a very soft biological tissue) are examined. The results demonstrate that the proposed model provides an acceptable prediction of the behavior of elastomers and soft tissues under large deformation for different applied loading states.  相似文献   

7.
本文讨论了炭黑填充橡胶材料的唯象本构模型。考虑到Mooney模型无法表征橡胶类材料大变形阶段的力学特性,首先利用实验数据,对Mooney模型进行了分析,讨论了炭黑含量与Mooney模型准确表征橡胶材料应变区间大小的关系,Mooney模型对纯剪切和等比双向拉伸等复杂变形的预测能力,同时也分析了材料参数对Mooney模型的影响。最后在Mooney模型的基础上添加了一个修正项,且改进后的Mooney模型满足Treloar和Ogden六项假设。通过与实验数据对比分析,改进Mooney模型可以较好地描述橡胶材料大变形阶段的应力应变关系,同时提高了预测橡胶材料复杂变形的能力。  相似文献   

8.
This paper provides a new constitutive model for rubber-like materials. The model adds to the 8-chain density introduced by Arruda and Boyce, two phenomenological components: an original part made of an integral density and an interleaving constraint part represented by a logarithmic function as proposed by Gent and Thomas. The model contains six rheological parameters connected to the polymer chemistry and to the macroscopic behavior. Four sets of experimental data from the literature are used to identify the rheological parameters and to assess the proposed model. The model is able to reproduce with a good accuracy experimental data performed under different loading conditions such as uniaxial and equibiaxial tension, uniaxial compression, pure and simple shear as well as the Mooney plot.  相似文献   

9.
10.
11.
Constitutive models are proposed for compressible isotropic hyperelastic materials that reflect limiting chain extensibility. These are generalizations of the model proposed by Gent for incompressible materials. The goal is to understand the effects of limiting chain extensibility when the compressibility of polymeric materials is taken into account. The basic homogeneous deformation of simple tension is considered and simple closed-form relations for the deformation characteristics are obtained for slightly compressible materials. An explicit first-order approximation is obtained for the lateral contraction and for the Poisson function in terms of the axial extension which is shown to be valid for each of two specific compressible versions of the Gent model. One of the main results obtained is that the effect of limiting chain extensibility is to stiffen the material relative to the neo-Hookean compressible case. Mathematics Subject Classifications (2000) 74B20, 74G55.  相似文献   

12.
超弹性材料是工程实际中的常用材料, 具有在外力作用下经历非常大变形、在外力撤去后完全恢复至初始状态的特征. 超弹性材料是典型的非线性弹性材料, 其性能可通过材料的应变能函数予以表征. 近几十年来, 围绕应变能函数形式的构造, 已提出许多超弹性材料本构关系研究的数学模型和物理模型, 但适用于多种变形模式和全变形范围的完全本构关系仍是该领域期待解决的重要问题. 本文从3个不同角度, 对超弹性材料本构关系研究的最新进展进行了总结和分析: (1)不同体积变化模式, 包含不可压与可压两种; (2)多变形模式, 包含单轴拉伸、剪切、等双轴以及复合拉剪等多个种类; (3)全范围变形程度, 包含小变形、中等变形到较大变形范围. 超弹性材料本构关系研究的最新进展表明, 为了全面描述具体材料的实验数据并在实际问题中应用超弹性材料, 需要建立适合于多种变形模式和全变形范围的可压超弹性材料的完全本构关系. 对实际超弹性材料完全本构关系的建立及可压超弹性材料应变能函数的构造, 笔者还提出了相应的实施步骤和研究方法.  相似文献   

13.
超弹性材料本构关系的最新研究进展   总被引:2,自引:0,他引:2  
彭向峰  李录贤 《力学学报》2020,52(5):1221-1234
超弹性材料是工程实际中的常用材料, 具有在外力作用下经历非常大变形、在外力撤去后完全恢复至初始状态的特征. 超弹性材料是典型的非线性弹性材料, 其性能可通过材料的应变能函数予以表征. 近几十年来, 围绕应变能函数形式的构造, 已提出许多超弹性材料本构关系研究的数学模型和物理模型, 但适用于多种变形模式和全变形范围的完全本构关系仍是该领域期待解决的重要问题. 本文从3个不同角度, 对超弹性材料本构关系研究的最新进展进行了总结和分析: (1)不同体积变化模式, 包含不可压与可压两种; (2)多变形模式, 包含单轴拉伸、剪切、等双轴以及复合拉剪等多个种类; (3)全范围变形程度, 包含小变形、中等变形到较大变形范围. 超弹性材料本构关系研究的最新进展表明, 为了全面描述具体材料的实验数据并在实际问题中应用超弹性材料, 需要建立适合于多种变形模式和全变形范围的可压超弹性材料的完全本构关系. 对实际超弹性材料完全本构关系的建立及可压超弹性材料应变能函数的构造, 笔者还提出了相应的实施步骤和研究方法.   相似文献   

14.
Characterization of Polyurethane Rubber at High Deformation Rates   总被引:1,自引:0,他引:1  
Polyurethane rubber materials have widespread usage in large-deformation energy absorption and dissipation applications. Accurate design modeling with these materials requires an appropriate constitutive material model that accounts for both static (low strain rate) and dynamic (high strain rate) responses. A common modeling approach is the use of hyper-viscoelastic formulations, which couple quasi-static hyperelastic with dynamic viscoelastic responses and describe the material response over a range of deformation rates. In this work the effectiveness of two models, the Modified Quasi-Linear Viscoelastic and Non-Linear Hyper-Viscoelastic, are investigated to describe the high-rate behaviour of two different grades of polyurethane rubber. From quasi-static, uniaxial compression tests, a Rivlin hyperelastic formulation was found to describe the low-rate response well. High-rate, uniaxial compressions test were performed using a Polymeric Split Hopkinson Pressure Bar (PSHPB), supported by high-speed photography. In general, it was found that the Modified Quasi-Linear Viscoelastic model did not fit the experimental data well due to its limited non-linear terms, while the Non-Linear Hyper-Viscoelastic provided very good agreement.  相似文献   

15.
短纤维增强三元乙丙橡胶包覆薄膜,是一种应用于固体火箭发动机缠绕包覆装药的新型复合材料.为了描述其在工作过程中受振动、冲击等载荷作用时的力学行为,基于黏弹性理论和纤维增强连续介质力学理论,提出了一种考虑应变率强化效应的横观各向同性黏-超弹本构模型.模型中应变能函数被分解为超弹性应变能和黏性应变能,其中超弹性应变能包括表征各向同性的橡胶基体应变能和表征各向异性的纤维拉伸应变能,黏性应变能采用表征橡胶和纤维黏性响应的宏观唯象模型.选取表征各应变能的函数形式,经过数学变换、替代、叠加,求解确定最终的应力应变形式,明确模型参数获取的具体步骤,将预测结果与实验结果对比分析,准确性较高.研究表明:该模型能有效预测材料在低应变率下纤维方向为0?~45?的非线性率相关力学特性;模型形式易于实现有限元开发,对固体火箭发动机装药结构完整性分析具有参考价值.  相似文献   

16.
提出了一种能够表征短纤维增强橡胶的横观各向同性超弹性本构模型,并结合试验体系,对其在数值分析中的应用方法和效果进行了研究。基于连续介质力学理论,建立了横观各向同性材料的应变能函数,推导得到不同变形形式下的应力应变关系,给出材料参数辨识试验方法,并成功应用于某短纤维增强橡胶测试中,得到表征其超弹性特性的相关材料参数。利用有限元软件ANSYS对不同纤维排布方向的单轴拉伸和平行纤维方向的平面拉伸进行仿真计算,并对比相应试验数据,以验证材料参数的可靠性。最后基于已验证的本构模型,建立了某铣槽装备减振环仿真模型,并对其进行了校核计算。研究结果表明,本文提出的本构模型能够有效表征短纤维增强橡胶的静态力学特性并且方便嵌入现有的有限元软件中,具有材料参数少、测试简便和结果准确等特点,工程实用性强。  相似文献   

17.
This paper deals with the identification of constitutive parameters of a Mooney model suitable for hyperelastic materials. These parameters are retrieved from a multiaxial mechanical test that gives rise to heterogeneous stress/ strain fields. Since no analytical relationship is available between measurements and unknown parameters, a suitable tool, namely the virtual fields method, is developed in case of large deformations and used to identify these unknowns. Several results obtained with numerical simulations and experiments performed on rubber specimens illustrate the approach.  相似文献   

18.
This paper models the cyclic stress softening of an elastomer in compression. After the initial compression the material is described as being transversely isotropic. We derive non-linear transversely isotropic constitutive equations for the elastic response, stress relaxation, residual strain, and creep of residual strain in order to model accurately the inelastic features associated with cyclic stress softening. These equations are combined with a transversely isotropic version of the Arruda–Boyce eight-chain model to develop a constitutive relation that is capable of accurately representing the Mullins effect during cyclic stress softening for a transversely isotropic, hyperelastic material, in particular a carbon-filled rubber vulcanizate. To establish the validity of the model we compare it with two test samples, one for filled vulcanized styrene–butadiene rubber and the other for filled vulcanized natural rubber. The model is found to fit this experimental data extremely well.  相似文献   

19.
丙烯酸弹性体的率相关分数阶黏弹性模型研究   总被引:1,自引:0,他引:1  
丙烯酸弹性体VHB 4910作为一种重要的介电弹性体,在软体机器人、致动器、俘能器和智能隔振器等领域有很好的应用前景.但材料的非线性黏弹性对其力学行为有显著影响.近来分数阶模型在复杂材料的建模中取得了成功.本文基于分数阶有限变形Kelvin-Voigt流变学模型建立弹性体的三维张量本构,并进一步推导单向拉伸情况下的本构...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号