首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charged or neutral adamantane guests can be encapsulated into the cavity of cationic metal–organic M6L4 (bpy-cage, M=PdII(2,2′-bipyridine), L=2,4,6-tri(4-pyridyl)-1,3,5-triazine) cages through hydrophobic interaction. These encapsulations can provide an approach to control the net charge on the resulting cage–guest complexes and regulate their charge-dominated assembly into hollow spherical blackberry-type assemblies in dilute solutions: encapsulation of neutral guests will hardly influence their self-assembly process, including the blackberry structure size, which is directly related to the intercage distance in the assembly; whereas encapsulating negatively (positively) charged guests resulted in a shorter (longer) intercage distance with larger (smaller) assemblies formed. Therefore, the host–guest chemistry approach can be used to tune the intercage distance accurately.  相似文献   

2.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

3.
Host–guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using 19F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4L6 2 , Fe8L12 3 , and Fe4L4 4 , each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest.  相似文献   

4.
The preparation of functionalized, heteroleptic PdxL2x coordination cages is desirable for catalytic and optoelectronic applications. Current rational design of these cages uses the angle between metal-binding (∠B) sites of the di(pyridyl)arene linker to predict the topology of homoleptic cages obtained via non-covalent chemistry. However, this model neglects the contributions of steric bulk between the pyridyl residues—a prerequisite for endohedrally functionalized cages, and fails to rationalize heteroleptic cages. We describe a classical mechanics (CM) approach to predict the topological outcomes of PdxL2x coordination cage formation with arbitrary linker combinations, accounting for the electronic effects of coordination and steric effects of linker structure. Initial validation of our CM method with reported homoleptic Pd12LFu24 (LFu = 2,5-bis(pyridyl)furan) assembly suggested the formation of a minor topology Pd15LFu30, identified experimentally by mass spectrometry. Application to heteroleptic cage systems employing mixtures of LFu (∠B = 127°) and its thiophene congener LTh (∠B = 149° ∠Bexp = 152.4°) enabled prediction of Pd12L24 and Pd24L48 coordination cages formation, reliably emulating experimental data. Finally, the topological outcome for exohedrally (LEx) and endohedrally (LEn) functionalized heteroleptic PdxL2x coordination cages were predicted to assess the effect of steric bulk on both topological outcomes and coordination cage yields, with comparisons drawn to experimental data.

A molecular mechanics approach enables the accurate prediction of polyhedral topology for homoleptic and heteroleptic palladium MxL2x coordination cages, allowing for new insight and design when considering endo- and exo-hedral functionalization.  相似文献   

5.
A mixture of two triamines, one diamine, 2‐formylpyridine and a ZnII salt was found to self‐sort, cleanly producing a mixture of three different tetrahedral cages. Each cage bound one of three guests selectively. These guests could be released in a specific sequence following the addition of 4‐methoxyaniline, which reacted with the cages, opening each in turn and releasing its guest. The system here described thus behaved in an organized way in three distinct contexts: cage formation, guest encapsulation, and guest release. Such behavior could be used in the context of a more complex system, where released guests serve as signals to other chemical actors.  相似文献   

6.
An unreported d,l ‐tripeptide self‐assembled into gels that embedded FeII4L4 metal–organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19F and 1H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel–cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.  相似文献   

7.
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways.

FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.  相似文献   

8.
A three-dimensional FeII4L6 parallelogram was prepared from ferrocene-containing ditopic ligands. The steric preference of the bulky ferrocene cores towards meridional vertex coordination brought about this new structure type, in which the ferrocene units adopt three distinct conformations. The structure possesses two distinct, bowl-like cavities that host anionic guests. Oxidation of the ferrocene FeII to ferrocenium FeIII causes rotation of the ferrocene hinges, converting the structure to an FeII1L1+ species with release of anionic guests, even though the average charge per iron increases in a way that would ordinarily increase guest binding strength. The degrees of freedom exhibited by these new structures – derived from the different configurations of the three ligands surrounding a meridional FeII center and the rotation of ferrocene cores – thus underpin their ability to reconfigure and eject guests upon oxidation.

An oxidation-triggered twist in its ferrocene ligands causes an Fe4L6 parallelogram to release its guests and collapse into a high spin Fe1L1 structure.  相似文献   

9.
Two CoII4L4 tetrahedral cages prepared from similar building blocks showed contrasting host–guest properties. One cage did not bind guests, whereas the second encapsulated a series of anions, due to electronic and geometric effects. When the building blocks of both cages were present during self‐assembly, a library of five CoII LA x LB 4?x cages was formed in a statistical ratio in the absence of guests. Upon incorporation of anions able to interact preferentially with some library members, the products obtained were redistributed in favor of the best anion binders. To quantify the magnitudes of these templation effects, ESI‐MS was used to gauge the effect of each template upon library redistribution.  相似文献   

10.
Introducing functionalities into the interior of metal–organic cage complexes can confer properties and utilities (e.g. catalysis, separation, drug delivery, and guest recognition) that are distinct from those of unfunctionalized cages. Endohedral functionalization of such cage molecules, for decades, has largely relied on modifying their organic linkers to covalently append targeted functional groups to the interior surface. We herein introduce an effective coordination method to bring in functionalities at the metal sites instead, for a set of polyhedral cages where the nodes are in situ formed polyoxovanadate clusters, [VIV6O6(OCH3)96-SO4)(COO)3]2−. Replacing the central sulfates of these hexavanadate clusters with more strongly coordinating phosphonate groups allows the installation of functionalities within the cage cavities. Organophosphonates with phenyl, biphenyl, and terphenyl tails were examined for internalization. Depending on the size/shape of the cavities, small phosphonates can fit into the molecular containers whereas larger ones inhibit or transform the framework architecture, whereby the first non-cage complex was isolated from a reaction that otherwise would lead to entropically favored regular polyhedra cages. The results highlight the complex and dynamic nature of the self-assembly process involving polyoxometalates and the scope of molecular variety accessible by the introduction of endo functional groups.

Installation of oversized functions within a metal–organic cage may “burst” or even transform the molecular cage itself.  相似文献   

11.
The construction of macromolecular hosts that are able to thread chiral guests in a stereoselective fashion is a big challenge. We herein describe the asymmetric synthesis of two enantiomeric C2-symmetric porphyrin macrocyclic hosts that thread and bind different viologen guests. Time-resolved fluorescence studies show that these hosts display a factor 3 kinetic preference (ΔΔGon = 3 kJ mol−1) for threading onto the different enantiomers of a viologen guest appended with bulky chiral 1-phenylethoxy termini. A smaller kinetic selectivity (ΔΔGon = 1 kJ mol−1) is observed for viologens equipped with small chiral sec-butoxy termini. Kinetic selectivity is absent when the C2-symmetric hosts are threaded onto chiral viologens appended with chiral tails in which the chiral moieties are located in the centers of the chains, rather than at the chain termini. The reason is that the termini of the latter guests, which engage in the initial stages of the threading process (entron effect), cannot discriminate because they are achiral, in contrast to the chiral termini of the former guests. Finally, our experiments show that the threading and de-threading rates are balanced in such a way that the observed binding constants are highly similar for all the investigated host–guest complexes, i.e. there is no thermodynamic selectivity.

Chiral guests display kinetic stereoselective threading through chiral porphyrin cages if their chirality is located at the chain ends and not in the centers, supporting the previously reported entron effect of threading.  相似文献   

12.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

13.
Discrete (M3L2)n cages assembled from a tripodal ligand (L) and metal ions (M: Cu(i) or Ag(i)) are embedded in networked coordination hosts formed by partial dissociation of the same discrete cages during the crystallization process. The resulting “eggs-in-an-egg-carton” structures provide unique examples of the co-crystallization of discrete and infinite coordination frameworks.

Discrete coordination cages were connected into the infinite lattices via shape-complementary co-crystallization with networked coordination hosts in the “eggs-in-an-egg-carton” styles.  相似文献   

14.
Planar pyridyl N‐oxides are encapsulated in mono‐metallic PdII/PtII‐cages based on a tetra‐pyridyl calix[4]pyrrole ligand. The exchange dynamics of the cage complexes are slow on both the NMR chemical shift and EXSY timescales, but encapsulation of the guests by the cages is fast on the human timescale. A “French doors” mechanism, involving the rotation of the meso‐phenyl walls of the cages, allows the passage of the planar guests. The encapsulation of quinuclidine N‐oxide, a sterically more demanding guest, is slower than pyridyl N‐oxides in the PdII‐cage, and does not take place in the PtII counterpart. A modification of the encapsulation mechanism for the quinuclidine N‐oxide is postulated that requires the partial dissociation of the PdII‐cage. The substrate binding selectivity featured by the cages is related to their different guest uptake/release mechanisms.  相似文献   

15.
The equilibrium geometries and spectroscopic and energetic characteristics of model endohedral M20@C 80 n? clusters, in which the guest clusters M20 = N20, C20, and B20 are squeezed inside the fullerene C 80 n? cages (n = 0, 2, 4, and 6), have been calculated at the density functional theory B3LYP/6-31G and B3LYP/6-31G* levels. Analogous calculations with partial geometry optimization have been performed for their congeners M20@He 80 n? with a fixed icosahedral helium cage He80. According to the calculations, all the structures of the N20@C80, C20@C80, and B20@C80 series correspond to local minima of the potential energy surface (all vibrational frequencies are real). In the first cluster, the N20 guest has a structure of a dodecahedron with a diameter of ~4.0 Å. The alternative 10N2@C80 structure containing ten separated endohedral N2 molecules is considerably less favorable and transforms without a barrier to the dodecahedral N20@C80 isomer upon geometry optimization. It has been suggested that, under extreme supercompresison conditions, molecular nitrogen can be associated without barriers into highly endothermal chemically bound clusters of the N20 type. In the helium analogues, the relative position of the N20@He80 and 10N20@He80 structures on the energy scale is determined by the degree of compression and can change its sign with a change in the diameter of the external cage D(He80). The mechanism of gradual assembly of the N20 dodecahedron from the 10N2 set has been traced with a decrease in the diameter D(He80) in the range 7.5–8.6 Å. In the C20@C80 cluster, the C20 guest has a structure of a distorted dodecahedron bound to the C80 cage through four “inner” (endohedral) bonds. In the B20@C80 cluster, the B20 guest is severely squeezed along the C5 axis. Its equatorial atoms form ten endohedral B-C bonds to C80 cage atoms. In similar systems, the division of the endoclusters into the internal guest and external cage becomes uncertain. Calculations predict that the isolated “salt” molecules of the L n C20 and L n B20 type in which the C20 and B20 clusters function as anions surrounded by the L atoms of alkali metals (n = 1–6) should be stable to stepwise dissociation accompanied by elimination of separate L atoms and L2 molecules.  相似文献   

16.
With increasing interest in the potential utility of metallo-supramolecular architectures for applications as diverse as catalysis and drug delivery, the ability to develop more complex assemblies is keenly sought after. Despite this, symmetrical ligands have been utilised almost exclusively to simplify the self-assembly process as without a significant driving foa mixture of isomeric products will be obtained. Although a small number of unsymmetrical ligands have been shown to serendipitously form well-defined metallo-supramolecular assemblies, a more systematic study could provide generally applicable information to assist in the design of lower symmetry architectures. Pd2L4 cages are a popular class of metallo-supramolecular assembly; research seeking to introduce added complexity into their structure to further their functionality has resulted in a handful of examples of heteroleptic structures, whilst the use of unsymmetrical ligands remains underexplored. Herein we show that it is possible to design unsymmetrical ligands in which either steric or geometric constraints, or both, can be incorporated into ligand frameworks to ensure exclusive formation of single isomers of three-dimensional Pd2L4 metallo-supramolecular assemblies with high fidelity. In this manner it is possible to access Pd2L4 cage architectures of reduced symmetry, a concept that could allow for the controlled spatial segregation of different functionalities within these systems. The introduction of steric directing groups was also seen to have a profound effect on the cage structures, suggesting that simple ligand modifications could be used to engineer structural properties.

Steric and geometric constraints were used to design unsymmetrical ditopic ligands that form single Pd2L4 cage isomers with high fidelity.  相似文献   

17.
Organic host–guest doped materials exhibiting the room temperature phosphorescence (RTP) phenomenon have attracted considerable attention. However, it is still challenging to investigate their corresponding luminescence mechanism, because for host–guest systems, it is very difficult to obtain single crystals compared to single-component or co-crystal component materials. Herein, we developed a series of organic doped materials with triphenylamine (TPA) as the host and TPA derivatives with different electron-donating groups as guests. The doped materials showed strong fluorescence, thermally activated delayed fluorescence (τ: 39–47 ms), and efficient room temperature phosphorescence (Φphos: 7.3–9.1%; τ: 170–262 ms). The intensity ratio between the delayed fluorescence and phosphorescence was tuned by the guest species and concentration. Molecular dynamics simulations were used to simulate the molecular conformation of guest molecules in the host matrix and the interaction between the host and guest molecules. Therefore, the photophysical properties were calculated using the QM/MM model. This work provides a new concept for the study of molecular packing of guest molecules in the host matrix.

Molecular dynamics simulations were used to simulate the molecular conformation and interaction between hosts and guests. This work provides a new concept for the study of molecular packing for the investigation of the luminescence mechanism.  相似文献   

18.
This Review covers design strategies, synthetic challenges, host–guest chemistry, and functional properties of interlocked supramolecular cages. Some dynamic covalent organic structures are discussed, as are selected examples of interpenetration in metal–organic frameworks, but the main focus is on discrete coordination architectures, that is, metal‐mediated dimers. Factors leading to interpenetration, such as geometry, flexibility and chemical makeup of the ligands, coordination environment, solvent effects, and selection of suitable counter anions and guest molecules, are discussed. In particular, banana‐shaped bis‐pyridyl ligands together with square‐planar metal cations have proven to be suitable building blocks for the construction of interpenetrated double‐cages obeying the formula [M4L8]. The peculiar topology of these double‐cages results in a linear arrangement of three mechanically coupled pockets. This allows for the implementation of interesting guest encapsulation effects such as allosteric binding and template‐controlled selectivity. In stimuli‐responsive systems, anionic triggers can toggle the binding of neutral guests or even induce complete structural conversions. The increasing structural and functional complexity in this class of self‐assembled hosts promises the construction of intelligent receptors, novel catalytic systems, and functional materials.  相似文献   

19.
The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.

Herein, we use a supramolecular coordination cage as a catalyst for the reduction of aldehydes to the corresponding alcohols using a weak hydride donor in neutral water, with a mode of action reminiscent of natural enzymes.  相似文献   

20.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号