首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
In this paper, the impact between a rigid pendulum and rough surfaces is studied. The rolling friction moment and the coefficient of rolling friction are introduced, and an improved mathematical model of the planar impact with friction is presented. The influence of the moment of rolling friction on the energy dissipated by friction during the impact is analyzed. For a simple pendulum, using the energetic coefficient of restitution, more energy is dissipated for larger values of the coefficient of kinetic friction and contact radius, and for smaller values of the length of the beam. For a double pendulum using the kinematic coefficient of restitution, some energetically inconsistent results can be solved for some values of the coefficient of rolling friction.  相似文献   

2.
The losses in hydrodynamic cascades caused by periodic flow unsteadiness are theoretically estimated on the assumption that the losses are due to energy expenditure to the formation of unsteady trailing vortices shed from the profiles of the cascades. The trailing vortex intensity is determined within the framework of the inviscid fluid model, by solving the corresponding problems in the linear formulation. The work done on the trailing vortex formation is determined by the increment of the kinetic energy of the flow induced by the corresponding vortices. Examples of calculations are presented for the case of periodic unsteadiness of the flow due to the hydrodynamic interaction of the cascades. The calculated results are compared with the experimental data.  相似文献   

3.
In this work we analyse the possibility of energy harvesting from the vibration of the environment. The investigations are performed using experimental rig, which consists of a parametrically forced pendulum and an energy harvester, and the mathematical model developed based on the experimental rig. Numerical studies focus on the oscillating motion of pendulum in 2:1 resonance and show good agreement with experimental results. We present that the energy harvesting is possible and is more efficient for shorter reduced length of the pendulum, as proved numerically and experimentally.  相似文献   

4.
We consider the low energy dynamics of the double pendulum. Low energy implies energies close to the critical value required to make the outer pendulum rotate. All the known interesting results for the double pendulum are at high energies, that is, energies higher than that required to make both pendulums rotate. We show that interesting behavior can occur at low energies as well by which we mean energies just sufficient to make the outer pendulum rotate. A harmonic balance and the Lindstedt–Poincare analysis at the low energies establish that at small, but finite amplitude; the two normal modes behave differently. While the frequency of the “in-phase” mode is almost unchanged with increasing amplitude, the frequency of the “out-of-phase” mode drops sharply. Numerical analysis verifies this analytic result and since the perturbation theory indicates a mode softening for the out-of-phase mode at a critical amplitude, we did a careful numerical analysis of the low energy region just above the threshold for onset of rotation for the outlying pendulum. We find chaotic behavior, but the chaos is a strong function of the initial condition.  相似文献   

5.
A mathematical pendulum affected by parametric disturbance with potential energy being periodic step function is considered. Non-linear equation of the pendulum depends on two parameters characterizing the mean value in time of the parametric disturbance and range of its “ripple”. Values of the parameters can be set arbitrarily. The non-linear problem of stability for two particular solutions of the equation corresponding to a hanging and inverse pendulum is solved.  相似文献   

6.
预应力锚索加固岩体的应力损失分析   总被引:5,自引:0,他引:5  
预应力锚索加固岩体的效果取决于预应力的大小。为了保持岩体长期稳定,必须长期保持有足够的预应力。岩体随时间产生的变形、锚索松驰、腐蚀、结构的不同等因素都将造成锚索预应力损失。这对加固效果带来不良影响。本文着重研究岩体随时间的变形产生的预应力损失。  相似文献   

7.
单摆冲击划痕法及其在磨粒磨损和冲蚀磨损研究中的应用   总被引:2,自引:0,他引:2  
为了促进新近发展起来的单摆冲击划痕法在磨损研究领域的应用,考察材料在单摆冲击划痕条件下的磨损规律,弄清这种方法与平稳加载滑动磨粒磨损及冲击加载喷砂冲蚀之间的关系,采用单摆冲击划痕法、滑动磨粒磨损和喷砂冲蚀3种试验方法,研究了几种纯金属和合金材料的磨损行为.结果表明:在单摆冲击划痕过程中,比能耗(材料产生单位体积划痕所消耗的能量)与材料的切向动态硬度之间有较好的线性关系,二者都可以用作单摆冲击划痕法评价材料耐磨性的指标;材料的法向动态硬度与显微硬度有较好的线性关系,而且法向动态硬度能够更准确地反映材料在平稳加载条件下的抗磨能力  相似文献   

8.
The simulated and experimental responses of a rigid-arm pendulum driven by an external impactor are considered. Here, impact occurs if the trajectory of a rotating impactor intersects that of the pendulum. Using the rotation rate of the impactor as the control parameter, experimental trials have demonstrated much of the dynamic behavior predicted by numerical simulations. The system exhibits chatter (i.e., multiple impacts within a single forcing period), sticking (i.e., contact between the pendulum and the impactor for non-negligible amounts of time), high-order periodicity, and behavior suggestive of chaos. A new convention for classifying periodic motions as well as insights regarding the nature of the coefficient of restitution (COR) in an experimental impacting system are also presented.  相似文献   

9.
《力学快报》2020,10(6):448-455
An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper. The system consists of two uncoupled rolling pendulum. The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance. This harvester can be used to harvest the energy at low frequency. A prototype is developed and evaluated. Its mathematical model is derived. A cam with rolling follower mechanism is employed to generate multi-frequency excitation. An experimental study is conducted to validate the proposed concept. The experimental results are confirmed by the numerical results. The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz.  相似文献   

10.
Quantitative Impact Testing of Energy Dissipation at Surfaces   总被引:1,自引:0,他引:1  
Impact testing with nanoscale spatial, force, and temporal resolution has been developed to address quantitatively the response of surfaces to impingement of local contact at elevated velocities. Here, an impact is generated by imparting energy to a pendulum carrying an indenter, which then swings towards a specimen surface. The pendulum displacement as a function of time x(t) is recorded, from which one can extract the maximum material penetration x max , residual deformation x r , and indentation durations t in and t out. In an inverse application one can use the x(t) response to extract material constants characterizing the impact deformation and extent of energy absorption, including material specific resistance coefficient Cin, coefficient of restitution e, and dynamic hardness H imp . This approach also enables direct access to the ratio H/E, or resilience of the deformed material volume, at impact velocities of interest. The impact response of aluminum was studied for different contact velocities, and the mechanical response was found to correlate well with our one-dimensional contact model. Further experiments on annealed and work hardened gold showed that dynamic hardness H imp scales with contact velocity and highlighted the importance of rate-dependent energy absorption mechanisms that can be captured by the proposed experimental approach.
K. J. Van Vliet (SEM member)Email:
  相似文献   

11.

The pendulum applied to the field of mechanical energy harvesting has been studied extensively in the past. However, systems examined to date have largely comprised simple pendulums limited to planar motion and to correspondingly limited degrees of excitational freedom. In order to remove these limitations and thus cover a broader range of use, this paper examines the dynamics of a spherical pendulum with translational support excitation in three directions that operate under generic forcing conditions. This system can be modelled by two generalised coordinates. The main aim of this work is to propose an optimisation procedure to select the ideal parameters of the pendulum for an experimental programme intended to lead to an optimised pre-prototype. In addition, an investigation of the power take-off and its effect on the dynamics of the pendulum is presented with the help of Bifurcation diagrams and Poincaré sections.

  相似文献   

12.
By using a series of canonical transformations (Birkhoffs series), an approximate integral of a conservative compound pendulum is evaluated. Level lines of this approximate integral are compared with the numerical simulation results. It is seen clearly that with a raised energy level, the nearly integrable system becomes non-integrable, i.e. the regular motion pattern changes to the chaotic one. Experiments with such a pendulum device display the behavior mentioned above.  相似文献   

13.
Nonlinear spatial vibrations of a mass point on a weightless elastic suspension (pendulum on a spring) are considered. The frequency of vertical vibrations is assumed to be equal to the doubled swinging frequency (the 1:1:2 resonance). In this case, as numerical calculations and experiments show, the vertical vibrations are unstable, which leads to the vertical vibration energy transfer to the pendulum swinging energy. The vertical vibrations of the mass point decay and, after a certain time period, the pendulum starts swinging in a certain vertical plane. This swinging is also unstable, which results in the reverse energy transfer into the vertical vibration mode. The vertical vibrations are again repeated. But after the second transfer of the vertical vibration energy to the pendulum swinging energy, the apparent plane of vibrations rotates by a certain angle. These effects are described analytically; namely, the energy transfer period, the time variations in the amplitudes of both modes, and the variations in the angle of the apparent vibration plane are determined. An asymptotic solution is also constructed for the mass point trajectory in the orbit elements. In projection on the horizonal plane, the mass point moves in a nearly elliptic trajectory. The ellipse semiaxes slowly vary with time, so that their product remains constant, and the major semiaxis slowly rotates at a constant sectorial velocity. The obtained analytic time dependence of the ellipse semiaxes and the precession angle agree well with the results of numerical calculations.  相似文献   

14.
The control of angular oscillations or energy of a system through mass reconfiguration is examined using a variable length pendulum. Control is accomplished by sliding the end mass towards and away from the pivot as the pendulum oscillates. The resulting attenuation or amplification of the angular oscillations are explained using the Coriolis inertia force and by examining the energy variation during an oscillation cycle. Simple rules relating the sliding motion to the angular oscillations are proposed and assessed using numerical simulations. An equivalent viscous damping ratio is introduced to quantify the attenuation/amplification phenomena. Sliding motion profiles for achieving attenuation have been simulated with the results being discussed in detail.  相似文献   

15.
On the Global Geometric Structure of the Dynamics of the Elastic Pendulum   总被引:1,自引:0,他引:1  
We approach the planar elastic pendulum as a singular perturbation of the pendulum to show that its dynamics are governed by global two-dimensional invariant manifolds of motion. One of the manifolds is nonlinear and carries purely slow periodic oscillations. The other one, on the other hand, is linear and carries purely fast radial oscillations. For sufficiently small coupling between the angular and radial degrees of freedom, both manifolds are global and orbitally stable up to energy levels exceeding that of the unstable equilibrium of the system. For fixed value of coupling, the fast invariant manifold bifurcates transversely to create unstable radial oscillations exhibiting energy transfer. Poincaré sections of iso-energetic manifolds reveal that only motions on and near a separatrix emanating from the unstable region of the fast invariant manifold exhibit energy transfer.  相似文献   

16.
田鑫  戈新生 《力学与实践》2015,37(3):361-366
3D 刚体摆是研究地球静止轨道航天器的一个力学简化模型, 它绕一个固定、无摩擦的支点旋转, 具有3 个转动自由度. 文章给出基于修正型罗德里格斯(Rodrigues) 参数描述的3D 刚体摆的姿态动力学方程, 针对3D 刚体摆姿态和角速度稳定的非线性控制设计问题, 基于无源性控制理论利用能量法设计了3D 刚体摆的系统控制器, 并证明了系统满足无源性. 构造了系统的李雅普诺夫(Lyapunov) 函数, 利用能量法设计出3D 刚体摆的姿态控制律, 并由拉萨尔(LaSalle) 不变集原理证明了该控制律的渐近稳定性. 仿真实验给出了3D 刚体摆在倒立平衡位置的姿态和角速度的渐近稳定性, 仿真实验结果表明基于能量方法的3D 刚体摆姿态控制是有效的.  相似文献   

17.
This paper describes a semi-analytical solution of the polydispersed wet stream equations, valid in regions where the nucleation rate is negligible. The solution can be used in conjunction with any conventional turbomachinery calculation procedure to obtain estimates of the magnitude of departures from thermal equilibrium. For example, from an initial estimate of the pressure distribution, it is a simple matter to calculate the distribution of supercooling and wetness fraction, together with the thermodynamic losses incurred by the flow.The method differs from the usual numerical approach by providing general results which give considerable physical insight. Computational time and effort is also dramatically reduced. The controlling parameters emerge naturally from the analysis, and information concerning the fundamental fluid mechanics of wet steam is revealed. In particular, the analysis demonstrates the role played by the thermal relaxation time and the rate of expansion in controlling the deviation from equilibrium.The versatility and usefulness of the technique in furnishing results for the turbine designer are demonstrated by a number of applications including one-dimensional nozzle flows and two-dimensional blade-to-blade and hub-to-tip flows. In each case it is shown how the droplet size and expansion rate influence the thermodynamic losses and other flow variables of interest.  相似文献   

18.
We investigate the dynamics of a simple pendulum coupled to a horizontal mass?Cspring system. The spring is assumed to have a very large stiffness value such that the natural frequency of the mass?Cspring oscillator, when uncoupled from the pendulum, is an order of magnitude larger than that of the oscillations of the pendulum. The leading order dynamics of the autonomous coupled system is studied using the method of Direct Partition of Motion (DPM), in conjunction with a rescaling of fast time in a manner that is inspired by the WKB method. We particularly study the motions in which the amplitude of the motion of the harmonic oscillator is an order of magnitude smaller than that of the pendulum. In this regime, a pitchfork bifurcation of periodic orbits is found to occur for energy values larger that a critical value. The bifurcation gives rise to nonlocal periodic and quasi-periodic orbits in which the pendulum oscillates about an angle between zero and ??/2 from the down right position. The bifurcating periodic orbits are nonlinear normal modes of the coupled system and correspond to fixed points of a Poincare map. An approximate expression for the value of the new fixed points of the map is obtained. These formal analytic results are confirmed by comparison with numerical integration.  相似文献   

19.
We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.  相似文献   

20.
赵龙  陆泽琦  丁虎  陈立群 《力学学报》2021,53(11):2972-2983
振动隔离和能量采集一体化是一种能够将有害振动隔离并转化为电能收集利用的动力学机制. 本文从局域共振超材料存在低频带隙特性出发, 研究了振动隔离和能量采集双功能超材料的动力学行为. 通过在球型磁腔内放置固接了感应线圈的球摆构成具有能量采集功能的球摆型谐振器, 并将其周期性的放置在基体梁中, 可以将带隙频率范围内的振动聚集在谐振器内, 以实现振动隔离和能量采集双功能. 建立了横向激励下双功能超材料梁的动力学方程, 应用Bloch's定理得到超材料的能带结构, 通过有限元仿真验证了理论模型和研究方法. 研究了不同参数下超材料梁的带隙特性. 进一步将一维拓展到二维, 研究了二维双功能超材料板的振动隔离和能量采集性能. 最后, 设计并建造了振动隔离和能量采集一体化双功能超材料动力学实验平台, 解析、数值和实验结果表明, 在局域共振带隙的频率范围内, 超材料梁主体的振动明显被抑制, 与此同时, 振动被局限在谐振器中, 使采集到的电压达到了最大值. 通过对附加谐振器和没有附加谐振器的能带结构和幅频响应的对比, 发现球摆型谐振器的加入可以在低频范围内形成了一个局域共振带隙, 有效提高了超材料梁在低频处的振动隔离和能量采集性能.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号