首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron transfer from reduced nicotinamide adenine dinucleotide (NADH) to the hydroxylase component (MMOH) of soluble methane monooxygenase (sMMO) primes its non-heme diiron centers for reaction with dioxygen to generate high-valent iron intermediates that convert methane to methanol. This intermolecular electron-transfer step is facilitated by a reductase (MMOR), which contains [2Fe-2S] and flavin adenine dinucleotide (FAD) prosthetic groups. To investigate interprotein electron transfer, chemically reduced MMOR was mixed rapidly with oxidized MMOH in a stopped-flow apparatus, and optical changes associated with reductase oxidation were recorded. The reaction proceeds via four discrete kinetic phases corresponding to the transfer of four electrons into the two dinuclear iron sites of MMOH. Pre-equilibrating the hydroxylase with sMMO auxiliary proteins MMOB or MMOD severely diminishes electron-transfer throughput from MMOR, primarily by shifting the bulk of electron transfer to the slowest pathway. The biphasic reactions for electron transfer to MMOH from several MMOR ferredoxin analogues are also inhibited by MMOB and MMOD. These results, in conjunction with the previous finding that MMOB enhances electron-transfer rates from MMOR to MMOH when preformed MMOR-MMOH-MMOB complexes are allowed to react with NADH [Gassner, G. T.; Lippard, S. J. Biochemistry 1999, 38, 12768-12785], suggest that isomerization of the initial ternary complex is required for maximal electron-transfer rates. To account for the slow electron transfer observed for the ternary precomplex in this work, a model is proposed in which conformational changes imparted to the hydroxylase by MMOR are retained throughout the catalytic cycle. Several electron-transfer schemes are discussed with emphasis on those that invoke multiple interconverting MMOH populations.  相似文献   

2.
BACKGROUND: The soluble methane monooxygenase (sMMO) system in methanotrophic bacteria uses three protein components to catalyze the selective oxidation of methane to methanol. The coupling protein B (MMOB) both activates the carboxylate-bridged diiron center in the hydroxylase (MMOH) for substrate oxidation and couples the reaction to electron transfer from NADH through the sMMO reductase. Although the X-ray structure of the hydroxylase is known, little structural information is available regarding protein B. RESULTS: Wild-type protein B from Methylococcus capsulatus (Bath) is very susceptible to degradation. The triple mutant protein B, Gly10-->Ala, Gly13-->Gln, Gly16-->Ala is resistant to degradation. Analyzing wild-type and mutant forms of protein B using size exclusion chromatography and circular dichroism spectroscopy suggests that the amino terminus of MMOB (Ser1-Ala25) is responsible for the proteolytic sensitivity and unusual mobility of the protein. We used the stable triple glycine protein B mutant to generate an affinity column for the hydroxylase and investigated the interaction between MMOH and MMOB. These results suggest the interaction is dominated by hydrophobic contacts. CONCLUSIONS: A structural model is presented for protein B that explains both its proclivity for degradation and its anomalous behavior during size exclusion chromatography. The model is consistent with previously published biophysical data, including the NMR structure of the phenol hydroxylase regulatory protein P2. Furthermore, this model allows for detailed and testable predictions about the structure of protein B and the role of proposed recognition sites for the hydroxylase.  相似文献   

3.
The diiron active sites of the reduced hydroxylases from methane monooxygenase (MMOH(red)) and toluene/o-xylene monooxygenase (ToMOH(red)) have been investigated by X-ray absorption spectroscopy (XAS). Results of Fe K-edge and extended X-ray absorption fine structure analysis reveal subtle differences between the hydroxylases that may be correlated to access of the active site. XAS data were also recorded for each hydroxylase in the presence of its respective coupling protein. MMOB affects the outer-shell scattering contributions in the diiron site of MMOH(red), whereas ToMOD exerts its main effect on the first-shell ligation of ToMOH(red); it also causes a slight decrease in the Fe-Fe separation. These results provide an initial step toward delineating the differences in structure and reactivity in bacterial multicomponent monooxygenase proteins.  相似文献   

4.
The soluble methane monooxygenase hydroxylase (MMOH) alpha-subunit contains a series of cavities that delineate the route of substrate entrance to and product egress from the buried carboxylate-bridged diiron center. The presence of discrete cavities is a major structural difference between MMOH, which can hydroxylate methane, and toluene/o-xylene monooxygenase hydroxylase (ToMOH), which cannot. To understand better the functions of the cavities and to investigate how an enzyme designed for methane hydroxylation can also accommodate larger substrates such as octane, methylcubane, and trans-1-methyl-2-phenylcyclopropane, MMOH crystals were soaked with an assortment of different alcohols and their X-ray structures were solved to 1.8-2.4 A resolution. The product analogues localize to cavities 1-3 and delineate a path of product exit and/or substrate entrance from the active site to the surface of the protein. The binding of the alcohols to a position bridging the two iron atoms in cavity 1 extends and validates previous crystallographic, spectroscopic, and computational work indicating this site to be where substrates are hydroxylated and products form. The presence of these alcohols induces perturbations in the amino acid side-chain gates linking pairs of cavities, allowing for the formation of a channel similar to one observed in ToMOH. Upon binding of 6-bromohexan-1-ol, the pi helix formed by residues 202-211 in helix E of the alpha-subunit is extended through residue 216, changing the orientations of several amino acid residues in the active site cavity. This remarkable secondary structure rearrangement in the four-helix bundle has several mechanistic implications for substrate accommodation and the function of the effector protein, MMOB.  相似文献   

5.
Lovell T  Li J  Noodleman L 《Inorganic chemistry》2001,40(20):5251-5266
The conflicting protein crystallography data for the oxidized form (MMOH(ox)) of methane monooxygenase present a dilemma regarding the identity of the solvent-derived bridging ligands within the active site: do they comprise a diiron unit bridged by 1H2O and 1OH(-) as postulated for Methylococcus capsulatus or 2OH(-) ligands as suggested for Methylosinus trichosporium? Using models derived explicitly from the M. capsulatus and M. trichosporium protein data, spin-unrestricted density functional methods have been used to study two structurally characterized forms of the hydroxylase component of methane monooxygenase. The active site geometries of the oxidized (MMOH(ox)) and two-electron-reduced (MMOH(red)) states have been geometry optimized using several quantum cluster models which take into account the antiferromagnetic (AF) and ferromagnetic (F) coupling of electron spins. Trends in cluster geometries, energetics, and Heisenberg J values have been evaluated. For the majority of models, calculated geometries are in good agreement with the X-ray analyses and appear relatively insensitive to the F or AF alignment of electron spins on adjacent Fe sites. Discrepancies between calculation and experiment appear in the orientation of the coordinated His and Glu amino acid side chains for both MMOH(ox) and MMOH(red) and also in unexpected intramolecular proton transfer in the MMOH(ox) cluster models. There is additional dispersion between (and among) calculated and experimental Fe(3+)-OH(-) distances with relevance to the correct protonation state of the solvent-derived ligands. In an accompanying paper (Lovell, T.; Li, J.; Noodleman, L. Inorg. Chem. 2001, 40, 5267), a comparison of the related energetics of the active site models examined herein is further evaluated in the full protein and solvent environment.  相似文献   

6.
Circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD have been used to probe the biferrous active site of two variants of ribonucleotide reductase. The aspartate to glutamate substitution (R2-D84E) at the binuclear iron site modifies the endogenous ligand set of ribonucleotide reductase to match that of the binuclear center in the hydroxylase component of methane monooxygenase (MMOH). The crystal structure of chemically reduced R2-D84E suggests that the active-site structure parallels that of MMOH. However, CD, MCD, and VTVH MCD data combined with spin-Hamiltonian analysis of reduced R2-D84E indicate a different coordination environment relative to reduced MMOH, with no mu-(1,1)(eta(1),eta(2)) carboxylate bridge. To further understand the variations in geometry of the active site, which lead to differences in reactivity, density functional theory (DFT) calculations have been carried out to identify active-site structures for R2-wt and R2-D84E consistent with these spectroscopic data. The effects of varying the ligand set, positions of bound and free waters, and additional protein constraints on the geometry and energy of the binuclear site of both R2-wt and variant R2s are also explored to identify the contributions to their structural differences and their relation to reduced MMOH.  相似文献   

7.
The oxidation of methane to methanol is performed at carboxylate-bridged dinuclear iron centers in the soluble methane monooxygenase hydroxylase (MMOH). Previous structural studies of MMOH, and the related R2 subunit of ribonucleotide reductase, have demonstrated the occurrence of carboxylate shifts involving glutamate residues that ligate the catalytic iron atoms. These shifts are thought to have important mechanistic implications. Recent kinetic and theoretical studies have also emphasized the importance of hydrogen bonding and pH effects at the active site. We report here crystal structures of MMOH from Methylococcus capsulatus (Bath) in the diiron(II), diiron(III), and mixed-valent Fe(II)Fe(III) oxidation states, and at pH values of 6.2, 7.0, and 8.5. These structures were investigated in an effort to delineate the range of possible motions at the MMOH active site and to identify hydrogen-bonding interactions that may be important in understanding catalysis by the enzyme. Our results present the first view of the diiron center in the mixed-valent state, and they indicate an increased lability for ferrous ions in the enzyme. Alternate conformations of Asn214 near the active site according to redox state and a distortion in one of the alpha-helices adjacent to the metal center in the diiron(II) state have also been identified. These changes alter the surface of the protein in the vicinity of the catalytic core and may have implications for small-molecule accessibility to the active site and for protein component interactions in the methane monooxygenase system. Collectively, these results help to explain previous spectroscopic observations and provide new insight into catalysis by the enzyme.  相似文献   

8.
Lovell T  Li J  Noodleman L 《Inorganic chemistry》2001,40(20):5267-5278
Using the density functional optimized active site geometries obtained in the accompanying paper (Lovell, T.; Li, J.; Noodleman, L. Inorg. Chem. 2001, 40, 5251), a combined density functional and electrostatics approach has been applied to further address attendant uncertainties in the protonation states of the bridging ligands for MMOH(ox). The acidities (pK(a)s) associated with the bridging H(2)O ligand in Methylococcus capsulatus and corresponding energetics of each active site cluster interacting with the protein environment have been evaluated. The pK(a) calculations in combination with the results of the gas phase DFT studies allow the active site cluster in Methylosinustrichosporium to be best described as a diiron unit bridged by 2OH(-) ligands having an overall neutral net cluster charge. The presence of the exogenous acetate in M. capsulatus reveals a diiron unit bridged by 1OH(-) and 1H2O which asymmetrically shares its proton with a second-shell acetate in a very short strong AcO..H...OH hydrogen bond. For all MMOH(ox) and MMOH(red) active sites examined, significant Fe-ligand covalency is evident from the ESP atom charges, consistent with very strong ligand --> metal charge transfer from the muOH(-) and mu-carboxylato bridging ligands. The magnitude of electrostatic interaction of the individual protein residues in the active domain with the active site has been assessed via an energy decomposition scheme. Important second-shell residues are highlighted for the next level of quantum mechanics based calculations or alternatively for site-directed mutagenesis studies. Finally, from the known structural and spectroscopic evidence and the DFT studies, a possible mechanism is suggested for the conversion of MMOH(ox) into MMOH(red) that involves a combination of protein residues and solvent-derived ligands from the second coordination sphere.  相似文献   

9.
The methane and toluene monooxygenase hydroxylases (MMOH and TMOH, respectively) have almost identical active sites, yet the physical and chemical properties of their oxygenated intermediates, designated P*, H(peroxo), Q, and Q* in MMOH and ToMOH(peroxo) in a subclass of TMOH, ToMOH, are substantially different. We review and compare the structural differences in the vicinity of the active sites of these enzymes and discuss which changes could give rise to the different behavior of H(peroxo) and Q. In particular, analysis of multiple crystal structures reveals that T213 in MMOH and the analogous T201 in TMOH, located in the immediate vicinity of the active site, have different rotatory configurations. We study the rotational energy profiles of these threonine residues with the use of molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) computational methods and put forward a hypothesis according to which T213 and T201 play an important role in the formation of different types of peroxodiiron(III) species in MMOH and ToMOH. The hypothesis is indirectly supported by the QM/MM calculations of the peroxodiiron(III) models of ToMOH and the theoretically computed Mo?ssbauer spectra. It also helps explain the formation of two distinct peroxodiiron(III) species in the T201S mutant of ToMOH. Additionally, a role for the ToMOD regulatory protein, which is essential for intermediate formation and protein functioning in the ToMO system, is advanced. We find that the low quadrupole splitting parameter in the Mo?ssbauer spectrum observed for a ToMOH(peroxo) intermediate can be explained by protonation of the peroxo moiety, possibly stabilized by the T201 residue. Finally, similarities between the oxygen activation mechanisms of the monooxygenases and cytochrome P450 are discussed.  相似文献   

10.
As the first application of our recently developed ONIOM2(QM:MM) and ONIOM3(QM:QM:MM) codes to the metalloenzymes with a large number of protein residues, two members of the non-heme protein family, methane monooxygenause and ribonucleotide reductase, have been chosen. The "active-site + four alpha-helical fragments" model was adopted which includes about 1000 atoms from 62 residues around the Fe-centered spheres. Comparison of the active-site geometries of MMOH and R2 units optimized with this model with those obtained with the "active site only" (with only 39-46 atoms) model and the X-ray results clearly demonstrates the crucial role of the active site-protein interaction in the enzymatic activities.  相似文献   

11.
Hydroxylation of aliphatic C-H bonds is a chemically and biologically important reaction, which is catalyzed by the oxidoiron group FeO(2+) in both mononuclear (heme and nonheme) and dinuclear complexes. We investigate the similarities and dissimilarities of the action of the FeO(2+) group in these two configurations, using the Fenton-type reagent [FeO(2+) in a water solution, FeO(H(2)O)(5)(2+)] and a model system for the methane monooxygenase (MMO) enzyme as representatives. The high-valent iron oxo intermediate MMOH(Q) (compound Q) is regarded as the active species in methane oxidation. We show that the electronic structure of compound Q can be understood as a dimer of two Fe(IV)O(2+) units. This implies that the insights from the past years in the oxidative action of this ubiquitous moiety in oxidation catalysis can be applied immediately to MMOH(Q). Electronically the dinuclear system is not fundamentally different from the mononuclear system. However, there is an important difference of MMOH(Q) from FeO(H(2)O)(5)(2+): the largest contribution to the transition state (TS) barrier in the case of MMOH(Q) is not the activation strain (which is in this case the energy for the C-H bond lengthening to the TS value), but it is the steric hindrance of the incoming CH(4) with the ligands representing glutamate residues. The importance of the steric factor in the dinuclear system suggests that it may be exploited, through variation in the ligand framework, to build a synthetic oxidation catalyst with the desired selectivity for the methane substrate.  相似文献   

12.
We report the X-ray crystal structures of native and manganese(II)-reconstituted toluene/o-xylene monooxygenase hydroxylase (ToMOH) from Pseudomonas stutzeri OX1 to 1.85 and 2.20 A resolution, respectively. The structures reveal that reduction of the dimetallic active site is accompanied by a carboxylate shift and alteration of the coordination environment for dioxygen binding and activation. A rotamer shift in a strategically placed asparagine 202 accompanies dimetallic center reduction and is proposed to influence protein component interactions. This rotamer shift is conserved between ToMOH and the corresponding residue in methane monooxygenase hydroxylase (MMOH). Previously unidentified hydrophobic pockets similar to those present in MMOH are assigned.  相似文献   

13.
Protein effects in the activation of dioxygen by methane monooxygenase (MMO) were investigated by using combined QM/MM and broken-symmetry Density Functional Theory (DFT) methods. The effects of a novel empirical scheme recently developed by our group on the relative DFT energies of the various intermediates in the catalytic cycle are investigated. Inclusion of the protein leads to much better agreement between the experimental and computed geometric structures for the reduced form (MMOH(red)). Analysis of the electronic structure of MMOH(red) reveals that the two iron atoms have distinct environments. Different coordination geometries tested for the MMOH(peroxo) intermediate reveal that, in the protein environment, the mu-eta2,eta2 structure is more stable than the others. Our analysis also shows that the protein helps to drive reactants toward products along the reaction path. Furthermore, these results demonstrate the importance of including the protein environment in our models and the usefulness of the QM/MM approach for accurate modeling of enzymatic reactions. A discrepancy remains in our calculation of the Fe-Fe distance in our model of HQ as compared to EXAFS data obtained several years ago, for which we currently do not have an explanation.  相似文献   

14.
The diiron active site in the hydroxylase of Methylococcus capsulatus (Bath) methane monooxygenase (MMOH) has been studied in the oxidized form by X-ray absorption spectroscopy (XAS). Previous investigations by XAS and X-ray crystallography have identified two different distances (3.0 and 3.4 angstroms) between the two Fe atoms in the dinuclear site. The present study has employed a systematic extended X-ray absorption fine structure (EXAFS) fitting methodology, utilizing known and simulated active site and relevant model structures, to determine unambiguously the Fe-Fe separation in the oxidized form of MMOH. Consistent and unique fits were only possible for an Fe-Fe distance of 3.0 angstroms. This methodology was then applied to study potential changes in the active site local structure in the presence of MMOD, a protein of unknown function in multicomponent MMO. Fe K-edge and EXAFS analyses revealed negligible changes in the diiron site electronic and geometric structure upon addition of MMOD to oxidized MMOH.  相似文献   

15.
Using broken-symmetry unrestricted density functional theory quantum mechanical (QM) methods in concert with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane and substituted methanes by intermediate Q in methane monooxygenase hydroxylase (MMOH) has been quantitatively modeled. This protocol allows the protein environment to be included throughout the calculations and its effects (electrostatic, van der Waals, strain) upon the reaction to be accurately evaluated. With the current results, recent kinetic data for CH3X (X = H, CH3, OH, CN, NO2) substrate hydroxylation in MMOH (Ambundo, E. A.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 8770-8771) can be rationalized. Results for methane, which provide a quantitative test of the protocol, including a substantial kinetic isotope effect (KIE), are in reasonable agreement with experiment. Specific features of the interaction of each of the substrates with MMO are illuminated by the QM/MM modeling, and the resulting effects upon substrate binding are quantitatively incorporated into the calculations. The results as a whole point to the success of the QM/MM methodology and enhance our understanding of MMOH catalytic chemistry. We also identify systematic errors in the evaluation of the free energy of binding of the Michaelis complexes of the substrates, which most likely arise from inadequate sampling and/or the use of harmonic approximations to evaluate the entropy of the complex. More sophisticated sampling methods will be required to achieve greater accuracy in this aspect of the calculation.  相似文献   

16.
Determining structures of reaction intermediates is crucial for understanding catalytic cycles of metalloenzymes. However, short life times or experimental difficulties have prevented obtaining such structures for many enzymes of interest. We report geometric and electronic structures of a peroxo intermediate in the catalytic cycle of methane monooxygenase hydroxylase (MMOH) for which there is no crystallographic characterization. The structure was predicted via spin density functional theory using (57)Fe M?ssbauer spectral parameters as a reference. Computed isomer shifts (δ(Fe) = +0.68, +0.66 mm s(-1)) and quadrupole splittings (ΔE(Q) = -1.49, -1.48 mm s(-1)) for the predicted structure are in excellent agreement with experimental values of a peroxo MMOH intermediate. Predicted peroxo to iron charge transfer bands agree with UV-Vis spectroscopy. Peroxide binds in a cis μ-1,2 fashion and plays a dominant role in the active site's electronic structure. This induces a ferromagnetic to antiferromagnetic transition of the diiron core weakening the O-O bond in preparation for cleavage in subsequent steps of the catalytic cycle.  相似文献   

17.
We describe the synthesis and dioxygen reactivity of diiron(II) tetracarboxylate complexes [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Me(2)en)(2)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Bn(2)en)(2)] (6), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate. These complexes were prepared as models for the diiron(II) center in the hydroxylase component of soluble methane monooxygenase (MMOH). Compound 6 reacts with dioxygen to afford PhCHO in approximately 60(5)% yield, following oxidative N-dealkylation of the pendant benzyl group on the diamine ligand. The diiron(III) complex [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(O(2)CAr(Tol))(3)(N-Bnen)(N,N-Bn(2)en)] (8) was isolated from the reaction mixture. The 4.2 K M?ssbauer spectrum of 8 displays a single quadrupole doublet with parameters delta = 0.48(2) mm s(-1) and Delta E(Q) = 0.61(2) mm s(-1). The [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core structure in 8 matches that of the fully oxidized form of MMOH. The conversion of 6 to 8 closely parallels the chemistry of MMOH in which an O(2)-derived oxygen atom is inserted into the C-H bond of methane. Several reaction pathways are considered to account for this novel chemical transformation, and these are compared with mechanistic frameworks previously developed for related cytochrome P450 and copper(I) dioxygen chemistry.  相似文献   

18.
The outcome of O2 activation at the diiron(II) cluster in the R2 subunit of Escherichia coli (class I) ribonucleotide reductase has been rationally altered from the normal tyrosyl radical (Y122*) production to self-hydroxylation of a phenylalanine side-chain by two amino acid substitutions that leave intact the (histidine)2-(carboxylate)4 ligand set characteristic of the diiron-carboxylate family. Iron ligand Asp (D) 84 was replaced with Glu (E), the amino acid found in the cognate position of the structurally similar diiron-carboxylate protein, methane monooxygenase hydroxylase (MMOH). We previously showed that this substitution allows accumulation of a mu-1,2-peroxodiiron(III) intermediate, which does not accumulate in the wild-type (wt) protein and is probably a structural homologue of intermediate P (H(peroxo)) in O2 activation by MMOH. In addition, the near-surface residue Trp (W) 48 was replaced with Phe (F), blocking transfer of the "extra" electron that occurs in wt R2 during formation of the formally Fe(III)Fe(IV) cluster X. Decay of the mu-1,2-peroxodiiron(III) complex in R2-W48F/D84E gives an initial brown product, which contains very little Y122* and which converts very slowly (t1/2 approximately 7 h) upon incubation at 0 degrees C to an intensely purple final product. X-ray crystallographic analysis of the purple product indicates that F208 has undergone epsilon-hydroxylation and the resulting phenol has shifted significantly to become a ligand to Fe2 of the diiron cluster. Resonance Raman (RR) spectra of the purple product generated with 16O2 or 18O2 show appropriate isotopic sensitivity in bands assigned to O-phenyl and Fe-O-phenyl vibrational modes, confirming that the oxygen of the Fe(III)-phenolate species is derived from O2. Chemical analysis, experiments involving interception of the hydroxylating intermediate with exogenous reductant, and M?ssbauer and EXAFS characterization of the brown and purple species establish that F208 hydroxylation occurs during decay of the peroxo complex and formation of the initial brown product. The slow transition to the purple Fe(III)-phenolate species is ascribed to a ligand rearrangement in which mu-O2- is lost and the F208-derived phenolate coordinates. The reprogramming to F208 monooxygenase requires both amino acid substitutions, as very little epsilon-hydroxyphenylalanine is formed and pathways leading to Y122* formation predominate in both R2-D84E and R2-W48F.  相似文献   

19.
Several structural models for the active site of the peroxo intermediate state "P" of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model. These active site models have different O2 binding modes to the diiron center, such as the mu-eta2,eta2, trans-mu-1,2 and cis-mu-1,2 conformations. The calculated properties, including optimized geometries, electronic energies, Fe net spin populations, and M?ssbauer isomer shift and quadrupole splitting values, have been reported and compared with available experimental results. The high-spin antiferromagnetically (AF) coupled Fe3+ sites are correctly predicted by both OPBE and PW91 methods for all active site models. Our data analysis and comparisons favor a cis-mu-1,2 structure (model cis-mu-1,2a shown in Figure 9) likely to represent the active site of MMOH-P. Feasible structural changes from MMOH-P to another intermediate state MMOH-Q are also proposed, where the carboxylate group of Glu243 side chain has to open up from the mono-oxygen bridging position, and the dissociations of the terminal H2O ligand from Fe1 and of the oxygen atom in the carboxylate group of Glu144 from Fe2 are also necessary for the O2 binding mode changes from cis to trans. The O-O bond is proposed to break in the trans-conformation and forms two mu-oxo bridges in MMOH-Q. The terminal H2O molecule and the Glu144 side chain then rebind with Fe1 and Fe2, respectively, in Q.  相似文献   

20.
To predict isomer shifts and quadrupole splitting parameters of Fe atoms in the protein active sites of methane monooxygenase and ribonucleotide reductase, a correlation between experimental isomer shifts ranging 0.1-1.5 mm s(-)(1) for Fe atoms in a training set with the corresponding density functional theory (DFT) calculated electron densities at the Fe nuclei in those complexes is established. The geometries of the species in the training set, consisting of synthetic polar monomeric and dimeric iron complexes, are taken from the Cambridge structural database. A comparison of calculated M?ssbauer parameters for Fe atoms from complexes in the training set with their corresponding experimental values shows very good agreement (standard deviation of 0.11 mm/s, correlation coefficient of -0.94). However, for the Fe atoms in the active sites of the structurally characterized proteins of methane monooxygenase and ribonucleotide reductase, the calculated M?ssbauer parameters deviate more from their experimentally measured values. The high correlation that exists between calculated and observed quadrupole splitting and isomer shift parameters for the synthetic complexes leads us to conclude that the main source of the error arising for the protein active sites is due to the differing degrees of atomic-level resolution for the protein structural data, compared to the synthetic complexes in the training set. Much lower X-ray resolutions associated with the former introduce uncertainty in the accuracy of several bond lengths. This is ultimately reflected in the calculated isomer shifts and quadrupole splitting parameters of the Fe sites in the proteins. For the proteins, the closest correspondence between predicted and observed M?ssbauer isomer shifts follows the order MMOH(red), RNR(red), MMOH(ox), and RNR(ox), with average deviations from experiment of 0.17, 0.17, 0.17-0.20, and 0.32 mm/s, but this requires DFT geometry optimization of the iron-oxo dimer complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号