首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The solubility of H(2)S in a series of 1-butyl-3-methylimidazolium ([bmim](+)) based ionic liquids (ILs) with different anions, chloride, tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), triflate ([TfO](-)), and bis(trifluoromethyl)sulfonylimide ([Tf(2)N]-), and in a series of [Tf(2)N] ILs with different cations, i.e., N-alkyl-N'-methylimidazolium, 2-methyl-N-methyl-N'-alkyimidazolium, N-alkylpyridinium, N-butyl-N-methylpyrrolidinium, and N-alkyl-N,N-dimethyl-N-(2-hydroxyethyl)ammonium has been determined using medium-pressure NMR spectroscopy. The observed solubilities are significantly higher than those reported for many other gases in ILs, suggesting the occurrence of specific interactions between H2S and the examined ILs. Quantum chemical calculations have been used to investigate at a molecular level the interaction between H2S and the [bmim](+)-based ILs.  相似文献   

2.
While N,N′-dialkylimidazolium ionic liquids (ILs) have been well-established as effective solvents for dissolution and processing of cellulose, the detailed mechanism at the molecular level still remains unclear. In this work, we present a combined quantum chemistry and molecular dynamics simulation study on how the ILs dissolve cellulose. On the basis of calculations on 1-butyl-3-methylimidazolium chloride, one of the most effective ILs dissolving cellulose, we further studied the molecular behavior of cellulose models (i.e. cellulose oligomers with degrees of polymerization n = 2, 4, and 6) in the IL, including the structural features and hydrogen bonding patterns. The collected data indicate that both chloride anions and imidazolium cations of the IL interact with the oligomer via hydrogen bonds. However, the anions occupy the first coordination shell of the oligomer, and the strength and number of hydrogen bonds and the interaction energy between anions and the oligomer are much larger than those between cations and the oligomer. It is observed that the intramolecular hydrogen bond in the oligomer is broken under the combined effect of anions and cations. The present results emphasize that the chloride anions play a critically important role and the imidazolium cations also present a remarkable contribution in the cellulose dissolution. This point of view is different from previous one that only underlines the importance of the chloride anions in the cellulose dissolution. The present results improve our understanding for the cellulose dissolution in imidazolium chloride ILs.  相似文献   

3.
Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the π-π and Coulombic interactions between TTF-TCNQ and ILs.  相似文献   

4.
Recently we developed an access to metal- and metal-oxide colloids based on thermal evaporation of metals into ionic liquids (ILs). Here we present systematic studies on the long-time stability of gold and copper nanoparticles (NPs) in different ILs. The influence of metal concentration and temperature on the ripening of the as-prepared gold NPs in different ILs was investigated by transmission electron microscopy (TEM) and UV-vis absorption measurements. Short alkyl chain-length-methyl-imidazolium salts with weakly coordinating perfluorinated counter anions (PF(6), BF(4) or Tf(2)N, bis(trifluoromethanesulfonyl)amide) were found to be better stabilizers compared to ILs with cations bearing long alkyl chains (trihexyltetradecylphosphonium, 1-octyl-3-methylimidazolium) and anions of higher coordination strength (DCA, dicyanamide). In the latter ILs fast particle growth and agglomeration was observed. In the well-stabilizing ILs initially very small NPs form which undergo a similar ripening process at room temperature as at higher temperatures. The final particle size depends largely on the used IL and the metal and to a minor extent on the temperature. The metal concentration seems to be an unimportant factor.  相似文献   

5.
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.  相似文献   

6.
羟烷基胺功能化离子液体吸收SO_2的量子化学计算(英文)   总被引:2,自引:0,他引:2  
采用量子化学中的密度泛函理论(DFT)对羟烷基胺离子液体(HyAAILs)与二氧化硫(SO2)的相互作用进行了研究.通过几何结构优化,电荷分布和热力学参数计算等来确定离子液体中能够有效吸收SO2的官能团.HyAAILs与SO2反应形成平均距离为0.240nm的S—N键,导致电荷从ILs转移到SO2以及S—O键长和O—S—O键角的改变.气态和液态模型的计算结果表明,标准吉布斯函数变(△G苓)主要取决于阳离子的结构和分子质量.阳离子结构影响了吸收反应能垒,对于三种阳离子体系的反应活化能顺序为:Ea(secondary)Ea(tertiary)Ea(primary).理论计算结果得到了实验数据的验证,羟乙基伯胺离子液体吸收的SO2理论摩尔分数与文献中的实验数据非常接近.本研究提供了一种预测和验证功能离子液体性质的有效方法.  相似文献   

7.
Ultrathin films of two imidazolium-based ionic liquids (IL), [C(1)C(1)Im][Tf(2)N] (= 1,3-dimethylimidazolium bis(trifluoromethyl)imide) and [C(8)C(1)Im][Tf(2)N] (= 1-methyl-3-octylimidazolium bis(trifluoromethyl)imide) were prepared on a Au(111) single-crystal surface by physical vapor deposition in ultrahigh vacuum. The adsorption behavior, orientation, and growth were monitored via angle-resolved X-ray photoelectron spectroscopy (ARXPS). Coverage-dependent chemical shifts of the IL-derived core levels indicate that for both ILs the first layer is formed from anions and cations directly in contact with the Au surface in a checkerboard arrangement and that for [C(8)C(1)Im][Tf(2)N] a reorientation of the alkyl chain with increasing coverage is found. For both ILs, geometry models of the first adsorption layer are proposed. For higher coverages, both ILs grow in a layer-by-layer fashion up to thicknesses of at least 9 nm (>10 ML). Moreover, beam damage effects are discussed, which are mainly related to the decomposition of [Tf(2)N](-) anions directly adsorbed at the gold surface.  相似文献   

8.
With the purpose of assessing the reactivity of chloride ions dissolved in ionic liquids (ILs), a relative scale for the solvation of chloride is given for a series of ILs based on the bis(trifluoromethane)sulfonimide ([Tf(2)N]) anion and different cations, 1-butyl-3-methylimidazolium ([bmim]), 1-butyl-2,3-dimethylimidazolium ([bdmim]), 1-butyl-1-methylpyrrolidinium ([bmpy]), 1-butylpyridinium ([bpy]), 1-pentyl-1,1,1-triethylammonium ([C(5)e(3)am]), and 1-(2-hydroxy)ethyl-3-methylimidazolium ([mimeOH]). Insights into the solvation of chloride are achieved by the thermodynamic study of the reaction of dissociation of a chloride-templated nickel(II) metallacage performed at various temperatures by UV-visible spectroscopy in each IL. The order of chloride solvation [C(5)e(3)am][Tf(2)N] < [bmpy][Tf(2)N] < [bmim][Tf(2)N] 相似文献   

9.
在293.15-323.15 K范围内, 测定了13种常见离子液体及其25组混合体系的电导率. 利用Vogel-Tammann-Fulcher (VTF)方程对电导率数据进行拟合, 并通过方程式中的拟合参数分析了离子液体混合后其阴阳离子间缔合作用的变化规律. 结果表明,在相同温度下, 离子液体的阳离子侧链越短,阴离子电荷越分散, 阴阳离子间的氢键作用力越弱,离子液体的电导率越大, 其中阴离子的影响比阳离子更明显.混合离子液体中离子间的缔合作用不仅与阴阳离子的种类有关,而且与混合物的组成有关.  相似文献   

10.
11.
X-ray scattering data from four pairs of ionic liquids (ILs) are compared. The alkyl-substituted cations show a first sharp diffraction peak between 3 and 4 nm(-1) that is not observed for ILs having cations with ether- or hydroxy-substitutions. These observations indicate a significant difference in the intermediate range order for these liquids.  相似文献   

12.
研究了以1-丁基-3-甲基咪唑、四乙基铵及N-乙基吡啶为阳离子, 配以多种阴离子(H2PO4-, ClO4-, HSO4-, CH3COO-, Cl-, Br-, NO3-, SCN-, BF4-, PF6-)的离子液体对木瓜蛋白酶催化N-苯甲酰-L-精氨酸乙酯(BAEE)水解的活性及热稳定性的影响. 通过分析含离子液体体系中木瓜蛋白酶的水解活性和热力学失活参数, 发现该酶活性及稳定性与离子液体的Kosmotropicity性质无关. 因此, 离子的Hofmeister效应并不适合解释离子液体对木瓜蛋白酶催化特性的影响规律. 当以BF4-为阴离子, 改变阳离子结构时, 仅[BMIm][BF4]可提高酶活性, 其它含官能团的咪唑类离子液体则降低酶活性, 但大部分离子液体明显提高木瓜蛋白酶的热稳定性. 在所研究的离子液体中, 基于PF6-或BF4-阴离子的离子液体可提高木瓜蛋白酶的活性及其热稳定性. 在含[BMIm][PF6]介质中, 木瓜蛋白酶的水解活性最高; 在含[HOEtMIm][BF4]介质中其热稳定性最好.  相似文献   

13.
N,N'-Alkylmethylimidazolium cations have been separated in NACE when one of the N,N'-dialkylimidazolium salts (ionic liquids (ILs)) was used as an electrolyte additive to the organic solvent separation medium. The separated species were 1-methyl-, 1-ethyl-, 1-butyl-, 1-octyl-, 1-decyl-3-methylimidazolium and N-butyl-3-methylpyridinium cations and BGE composed of 1-ethyl-3-methylimidazolium ethylsulfate or 1-butyl-3-methylimidazolium trifluoroacetate [BMIm][FAcO] (A6; B2) diluted in ACN. It was demonstrated that contactless conductivity detection (CCD) may be applied to monitoring the separation process in nonaqueous separation media, allowing to use the UV light-absorbing imidazolium-based electrolyte additives. There could be marked three concentration regions of added ILs; at first ionic strength of BGE below 1-2 mM, and then the actual electrophoretic mobility of analytes rises from 0. At concentrations above 1-2 mM, the added IL facilitated separation. In concentration region of 1-20 mM, the actual electrophoretic mobility of analyzed imidazolium cations was increasing with decrease in separation medium ionic strength. At higher concentrations of BGE (above 30 mM), the conductivity of the separation media became too high for this detector. Some organic dyes were also successfully separated and detected by contactless conductivity detector in a 20 mM A6 separation electrolyte in ACN.  相似文献   

14.
A conventional ion mobility spectrometry (IMS) was used to study atmospheric pressure evaporation of seven pure imidazolium and pyrrolidinium ionic liquids (ILs) with [Tf2N], [PF6], [BF4] and [fap] anions. The positive drift time spectra of the as-received samples measured at 220 °C exhibited close similarity; the peak at reduced mobility K0 = 1.99 cm2 V−1 s−1 was a dominant spectral pattern of imidazolium-based ILs. With an assumption that ILs vapor consists mainly of neutral ion pairs, which generate the parent cations in the reactant section of the detector, and using the reference data on the electrical mobility of ILs cations and clusters, this peak was attributed to the parent cation [emim]. Despite visible change in color of the majority of ILs after the heating at 220 °C for 5 h, essential distinctions between spectra of the as-received and heated samples were not observed. In negative mode, pronounced peaks were registered only for ILs with [fap] anion.  相似文献   

15.
Ionic liquids (ILs), which are used as solvents for chemical reactions, are different from conventional organic solvents owing to their designability. Physicochemical parameters of the ILs, such as polarity and viscosity, that affect chemical equilibria and reaction kinetics can be tuned by changing the combination of anions and cations or by varying the lengths of the alkyl chains present in the cations. We were interested in knowing how these physicochemical parameters affect fundamental chemical reactions in ILs. Therefore, in this personal account, we investigate our recent work on two different photochemical reactions in ILs, namely excited-state intramolecular proton transfer of hydroxyflavone and photodissociation of aminodisulfide, using time-resolved spectroscopic techniques. Interestingly, the roles of the ILs in these chemical reactions are quite different. The effect of the cationic species of the ILs (i. e., the head groups and number of alkyl carbons) on the solvation environment upon photoexcitation and reaction rate are discussed.  相似文献   

16.
Density functional theory methods in combination with vibrational spectroscopy are used to investigate possible variants of molecular structure of the ion pairs of several imidazolium-based ionic liquids (ILs). Multiple stable structures are determined with the anion positioned (a) near to the C2 atom of the imidazolium ring, (b) between N1 and C5, (c) between N3 and C4, and (d) between C4 and C5. Chloride and bromide anions in vacuum also occupy positions above or below the imidazolium ring, but in the condensed state these positions are destabilized. In comparison with the halides that almost equally occupy the positions (a-d), tetrafluoroborate and hexafluorophosphate anions strongly prefer position (a). The position and the type of the anion influence the conformation of the side chains bound to the imidazolium N1 atom, which are able to adopt in vacuum all usual staggered or eclipsed conformations, although in the liquid state some of the conformations are present only as minor forms if at all. Vibrations of the cations depend both on the conformational changes and on the association with the anion. The formation of the ion pairs influences mainly stretching and out-of-plane vibrations of the imidazolium C-H groups and stretching vibrations of the perfluoroanions. Other modes of the ions retain their individuality and practically do not mix. This allows "interionic" vibrations to be separated and to regard the couple of the ions as an anharmonic oscillator. Such a model correlates the molecular structure of various ILs and their melting points without involving the energy of the interaction between the cations and anions but explains structure-melting point correlations on the grounds of quasy-elastic properties.  相似文献   

17.
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.  相似文献   

18.
The solvation of the enzyme Candida antarctica lipase B (CAL-B) was studied in eight different ionic liquids (ILs). The influence of enzyme-ion interactions on the solvation of CAL-B and the structure of the enzyme-IL interface are analyzed. CAL-B and ILs are described with molecular dynamics (MD) simulations in combination with an atomistic empirical force field. The considered cations are based on imidazolium or guanidinium that are paired with nitrate, tetrafluoroborate or hexafluorophosphate anions. The interactions of CAL-B with ILs are dominated by Coulomb interactions with anions, while the second largest contribution stems from van der Waals interactions with cations. The enzyme-ion interaction strength is determined by the ion size and the magnitude of the ion surface charge. The solvation of CAL-B in ILs is unfavorable compared to water because of large formation energies for the CAL-B solute cages in ILs. The internal energy in the IL and of CAL-B increases linearly with the enzyme-ion interaction strength. The average electrostatic potential on the surface of CAL-B is larger in ILs than in water, due to a weaker screening of charged enzyme residues. Ion densities increased moderately in the vicinity of charged residues and decreased close to non-polar residues. An aggregation of long alkyl chains close to non-polar regions and the active site entrance of CAL-B are observed in one IL that involved long non-polar decyl groups. In ILs that contain 1-butyl-3-methylimidazolium cations, the diffusion of one or two cations into the active site of CAL-B occurs during MD simulations. This suggests a possible obstruction of the active site in these ILs. Overall, the results indicate that small ions lead to a stronger electrostatic screening within the solvent and stronger interactions with the enzyme. Also a large ion surface charge, when more hydrophilic ions are used, increases enzyme-IL interactions. An increase of these interactions destabilizes the enzyme and impedes enzyme solvation due to an increase in solute cage formation energies.  相似文献   

19.
Due to their attractive physico‐chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template‐assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air‐ and water‐stable ILs, deep eutectic solvents (DESs), ILs with metal‐containing cations, and protic ILs. Template‐assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted.  相似文献   

20.
Aqueous solutions of five ionic liquids (ILs) of the 1-n-alkyl-3-methylimidazolium bromide family, [C(n)mim]Br (n = 4, 6, 8, 10, 12), were investigated by NMR measurements at 298.2 K as a function of IL concentrations. Critical aggregation concentrations and aggregation numbers of these ILs were determined by 1H NMR except for [C4mim]Br in D2O. The effects of the alkyl chain length of the cations were examined on the aggregation behavior of the ILs. 1H NMR data of the solvent D2O were used to investigate the hydration of the ILs in D2O, and it was found that the ionic hydration and the cation-anion association or aggregation of the ILs offset each other. The microenvironment of different protons of cations of the ILs in the aggregates was probed by determining the spin-lattice relaxation rate (1/T1). It is suggested that the imidazolium rings in the aggregates are exposed to water and that the molecular motion of the aggregates is more restricted than that of the monomers of the ILs. Furthermore, a stair-like microscopic aggregation structure is suggested for the [C(n)mim]Br/D2O (n = 6, 8, 10) systems from 2-D 1H-1H NOESY measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号