首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Illustrating direct connections between surface chemical events and mechanical and topological characteristics of self-assembled monolayers derived from octadecyltrichlorosilane (OTS) adsorption on Si(100), layers prepared in the presence and absence of moisture have been characterized. Uniform and robust self-assembled monolayers are demonstrated provided the Si(100) surface is fully hydroxylated by treatment in piranha solution and the dried surface is exposed to OTS under strict anhydrous conditions. With nanoscale resolution, the uniform mechanical properties are confirmed by interfacial force microscopy while the uniform topological properties are evident in atomic force microscopy images. The monolayer character of the OTS coverage is confirmed by X-ray photoelectron spectroscopy, ellipsometry, and patterning experiments. Analogous surfaces, prepared in the presence of moisture, exhibit nonuniform topological and mechanical properties.  相似文献   

2.
The growth of self-assembled monolayers from octadecyltrichlorosilane (OTS) on modified silicon surfaces has been investigated. The influence of different immersion times in a deactivation reagent on the growth mechanism and the ordering of the films has been studied. Characterization of the films and the submonolayer coverage has been performed with tapping mode atomic force microscopy, ellipsometry, and infrared spectroscopy. We found that a deactivation of active sites led to a higher mobility of adsorbed molecules on the surface resulting in circular islands of highly ordered alkylsiloxane. However, upon prolonged immersion in OTS these ordered islands did not continue to grow and full monolayer coverage could not be obtained. Instead, an exchange reaction with the deactivation reagent leading to a disordered film between the ordered islands was observed. This was confirmed by external reflection infrared spectroscopy.  相似文献   

3.
The molecular aggregation state of octadecylsiloxane monolayers on Si-wafer substrate surfaces prepared from octadecyltrimethoxysilane (OTMS) or octadecyltrichlorosilane (OTS) was investigated on the basis of grazing incidence X-ray diffraction (GIXD), Fourier transform infrared spectroscopy (FT-IR), contact angle measurement, field emission scanning electron microscopy (FE-SEM), and scanning force microscopy (SFM). The OTMS monolayer was prepared by using the chemical vapor adsorption (CVA) method, and the OTS monolayers, which were used as reference samples, were prepared either by chemisorption (OTS-S) or by the water-cast method (OTS-W). The GIXD, FT-IR, lateral force microscopic (LFM) measurements, and FE-SEM observation revealed that the alkyl chains in the OTMS monolayers prepared using the CVA method are in an amorphous state at room temperature. According to the LFM measurement, the transition temperature from the hexagonal crystalline phase to the amorphous phase was found to be ca. 333 K for the OTS-S monolayer prepared by the chemisorption method. However, the phase transition was not observed in the OTMS monolayer prepared by the CVA method. Also, the atomic force microscopic (AFM) observation and the contact angle measurement showed that the OTMS monolayer prepared by the CVA method has a uniform surface when compared to the OTS monolayers. These results indicated that organosilane compounds in the monolayer prepared by the CVA method were immobilized on the Si-wafer substrate surface in an amorphous state, which was quite different from the hexagonal crystalline state obtained by the chemisorption and water-cast methods.  相似文献   

4.
We present density functional theory calculations of the electronic structure and tunneling characteristics of alkanethiolate monolayers on Au(111). We systematically analyze radical3 x radical3 full coverage monolayers of SC6H12X molecules with different terminal groups, X=CH3, NH2, SH, OH, COOH, OCH3, on defect-free ("perfect") Au(111). We also study the influence of the surface-molecule bonding structure by comparing the properties of monolayers of SC6H12CH3 molecules on the perfect surface and on Au(111) surfaces with vacancies or adatoms. The tunneling currents (I) through the adsorbed monolayers with a single chemical contact have been calculated within the Tersoff-Hamann approach for voltages between -1 and +1 V. Computed currents are found to depend linearly on V at low voltage, with typical values of approximately 60 and 150 pA/molecule at 0.2 and 0.5 V, respectively, in good agreement with several experimental data. Computed tunneling currents show also a significant dependence on both the terminal group X and the surface structure. In particular, in order of decreasing intensities, currents for the different end groups are NH2 approximately SH>CH3>OH>OCH3>COOH. The relationships between the tunneling current, the work function of the surface+SAM, and the lineup of the HOMO with respect to the Fermi energy of the metal surface are examined.  相似文献   

5.
The physical and chemical properties of organic semiconductors are closely related to their aggregation structure. Tuning of aggregation structure and electrical property is important for the application in organic electronics. In this study, a facile way to tune the aggregation structure and electrical property of 2.6-diphenyl-anthracene (DPA) is realized by using the octadecyltrichlorosilane (OTS) modification layer with different density which is fabricated by controlling reaction temperature and time. Compared with low density OTS, DPA forms larger grain size, less grain boundaries, and better molecular ordering on high density OTS surface. As a result, the charge transporting mobility of DPA film on high density OTS surface is about two orders of magnitude higher than that on low density OTS surface. The tunable aggregation structure and electrical property of DPA demonstrated here would be meaningful for the application of DPA in organic electronics.  相似文献   

6.
Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.  相似文献   

7.
This work reports a novel and reproducible route for the successful modification of the surface of titanium (Ti) with self-assembled monolayers (SAMs). By electropolishing the surface of Ti, suitable physical/chemical surface properties were obtained for adequate growth of OctadecylTrichloroSilane (OTS) based SAM. Optimum conditions to achieve a well-organized and densely packed OTS film were also determined by monitoring the effect of different parameters including time, concentration, and temperature for OTS adsorption. The optimum conditions for the formation of an OTS-SAM were found to be upon immersion of the electropolished Ti substrate in a 10mM OTS solution at 10°C for 24h. Furthermore, multiple growth regimes for the formation of OTS-SAM on electropolished Ti surface were observed. The kinetics for the self-assembly were fast at the beginning of OTS adsorption, but rapidly slowed down after 10h of immersion, i.e. during the densification process of the film at the surface of Ti. In addition, the growth behavior was found to be random as opposed to the island growth behavior usually observed with OTS at the surface of silica. The successful implementation of OTS-SAM was further investigated through the immobilization and delivery of a model drug and the OTS monolayer showed clear abilities in drug delivery with an initial burst release up to 5days followed by a sustained release up to 26days.  相似文献   

8.
This paper describes a rational approach for reproducibly patterning single Au nanoparticles, 15-20-nm diameter, on silicon wafer substrates. The approach uses scanning probe oxidation (SPO) to pattern silicon oxide nanodomain arrays on silicon substrates modified with octadecyltrimethoxysilane (OTS). It was usually found using aminopropyltrimethoxysilane (APS) that Au nanoparticles only assembled at the domain boundaries probably because of asymmetrically distributed hydroxyl groups. To generate uniformly distributed hydroxyl groups on oxide domains, we employed a two-step treatment to etch and oxidize the substrate. With this treatment, oxide domains consistently attached Au nanoparticles to maximum capacity. Single Au nanoparticles were readily patterned by fabricating oxide nanodomains with a diameter below 30 nm. We also investigated the deposition of APS on OTS monolayers, which resulted in the assembly of Au nanoparticles outside of the oxide domains, and proposed two alternative methods to inhibit it.  相似文献   

9.
Understanding how cells sense their environment and are able to regulate their metabolism is of great importance for the success of biomaterials implantation. Self assembled monolayers (SAMs) are in use nowadays to model the surface of such materials. They permit the control of different surface parameters (like chemistry, surface energy and topography) enabling to get a greater insight in cells behaviour when interacting with surfaces and thus, in the future, to enhance surface properties of biomaterials. As sterilisation is the compulsory step for in vitro and in vivo assays with living biological materials, it is important to know how SAMs react under sterilisation techniques in use on biomaterials. In this work, the effect of three types of sterilisation techniques: gamma-irradiation, mostly used on biomaterials, dry heat and steam autoclaving, have been investigated on NH2 and CH3 terminated SAMs. Gamma-irradiation destructs drastically the NH2 and partially the CH3 monolayers by producing oxidative compounds (COOH, C=O, C-OH). The main product induced by gamma-irradiation on NH2 monolayers is carboxylic acid, whereas CH3 shows an important increase in the amount of alcoholic groups. This difference in deterioration is assumed to be due to the higher stability of the CH3 monolayer. Steam autoclaving to a lesser extent gives the same results on NH2 monolayers. Dry heat seems to be the most reliable technique, which can be used on such surfaces as it removes physically adsorbed organic contaminants without affecting the integrity of the surface.  相似文献   

10.
以OTS自组装单分子膜为探针研究TiO2液相空穴氧化机理   总被引:1,自引:0,他引:1  
通过引入十八烷基三氯硅烷(OTS)自组装单分子膜作为氧化反应的探针, 在排除反应物的吸附和扩散的条件下研究溶胶-凝胶制备的TiO2薄膜表面光催化空穴氧化初始过程. 研究结果表明, 在紫外光照下, 水溶液中OTS部分覆盖的TiO2表面能够很快从憎水变成亲水. 存在空穴捕获剂后, TiO2表面OTS自组装单分子膜碳链的脱除受到明显抑制, 水接触角随光照时间变化非常小; 而水中羟基自由基捕获剂或者F-的存在则对TiO2表面OTS自组装单分子膜碳链的脱除几乎无影响. 这表明, 空穴氧化在TiO2表面OTS自组装单分子膜碳链的脱除中占主要地位.  相似文献   

11.
On solvent-cleaned and piranha-etched single-crystal Al2O3(0001) surfaces, uniform, robust, self-assembled monolayers of octadecylsiloxane (ODS) are formed by 48 h exposure to a solution containing octadecyltrichlorosilane (OTS) in an anhydrous atmosphere. X-ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements confirm the presence of a uniform, complete monolayer. Reducing the exposure time or omitting the piranha-etch leads to much less uniform coverage. The ODS monolayers are stable when stored in ambient atmospheres for month-long periods. Thermal desorption in a vacuum environment (10(-9) Torr) shows the ODS monolayer is thermally stable up to at least 420 K. When heated in 200 mTorr of flowing forming gas (N2-10% H2) for 1 h at 520 K, slow loss of ODS was indicated. A schematic model is proposed which involves island nucleation by covalent bonding of OTS to surface hydroxyl groups followed by growth through the addition of mobile ODS species.  相似文献   

12.
Self-assembled monolayers (SAMs) of omega-substituted biphenylthiolates (omega-MBP) on gold were characterized by spectral ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), and vibrational sum frequency generation spectroscopy (VSFG). The vibrational studies of the SAMs were supported by an ab initio frequency analysis at HF/6-31G and BP86/6-31G levels, yielding an assignment of all relevant spectral features in the range from 3500 to 1200 cm(-1). We were able to demonstrate that hydroxy-terminated MBP (HMBP) SAMs are basically featureless in the range of the CH stretching vibrations. Accordingly, the adsorption of a SAM of octadecyltrichlorosilane (OTS) on top of this model surface could be studied. A red shift of the C-O stretching vibration from 1281 to 1264 cm(-1) was observed during the chemisorption of OTS, thus allowing for a quantification of the number of OTS molecules involved in surface binding of OTS, which was found to be about 26% on average.  相似文献   

13.
The structure, reactivity, and acid-base properties of mixed monolayers prepared by photochemical reaction of hydrogen-terminated silicon with mixtures of ethyl undecylenate and n-alkenes were studied by ATR-FTIR spectroscopy and contact-angle measurements. The surface composition of the mixed monolayers and its correlation with the hydrolysis reactivity of terminal ethoxycarbonyl (ester) groups were investigated by systematically varying the mole fraction of ethyl undecylenate and the chain length of the unsubstituted alkenes in the binary deposition solution. It has been shown that the mole fraction of ester groups on the surface deviates only slightly from the mole fraction of ethyl undecylenate in the solution. The efficiency of ester hydrolysis under acidic conditions is significantly influenced by the monolayer structure, i.e., the surface density of ester groups and length of the unsubstituted alkyl chains. In addition, we find that mixed omega-alkanoic acid/alkyl monolayers on silicon (prepared via hydrolysis) exhibit well-defined contact angle titration curves from which the surface acid dissociation constants were determined. The results were compared with the acid-base properties reported in the literature for carboxylic acid-terminated alkylsiloxane monolayers on hydroxylated silicon and for omega-mercaptoalkanoic acid/alkanethiolate monolayers on gold. The weak pKa dependence (deltapKa approximately 1) on the surface density of carboxylic acid groups and on the length of unsubstituted alkyl chains is attributed to variations of the microenvironment of the acid moieties. These experimental findings provide fundamental knowledge at the molecular level for the preparation of bioreactive surfaces of controlled reactivity on crystalline semiconductor substrates.  相似文献   

14.
《Supramolecular Science》1997,4(1-2):43-50
Self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) and mercapto ethanol were used to modify the surface functionality of platinum/titanium or platinum/tantalum bilayer patterns on thermally oxidized silicon wafers. The attachment of OTS to the exposed oxide region made it hydrophobic, while the anchoring of mercapto ethanol to the bilayer pattern turned it hydrophilic. This patterned hydrophobicity and hydrophilicity was exploited to preferentially deposit barium strontium titanate (BST) thin films on the patterned bilayers from an aqueous sol-gel solution. The combination of the SAMs and the sol-gel film formation method allowed direct patterned deposition of BST thin films, which could be useful for on-chip electronic applications. Wet oxygen annealing at 50 °C was sufficient to stabilize the deposited sol-gel coating without adversely affecting the functionality of the OTS, thus permitting multiple dip-coatings to obtain patterned films of a desired thickness. Heat treatment at 750 °C allowed densification and conversion of the sol-gel coatings to perovskite BST films.  相似文献   

15.
In this paper we present a study of using oxygen plasma for chemically modifying inert hydrocarbon self-assembled monolayers of octadecyltrichlorosilane (OTS-SAMs) and rendering active surfaces for protein immobilization. Detailed surface modification and protein immobilization were characterized by using ellipsometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared-attenuated total reflectance spectroscopy, and fluorescence microscopy. Our XPS results showed that the surface reaction between OTS-SAMs and oxygen plasma can generate new surface functional groups such as alcohol (C-O), aldehyde (C=O), and carboxylic acid (O-C=O), and their compositions can be controlled by using different treatment times and powers. A short treatment time ( approximately 1 s) and high power (10 W) can lead to a higher density of aldehyde groups, which can serve as linker groups for protein immobilization through the formation of Schiff bases with the amine groups of proteins. By using the fluorescence immunostaining method, we confirmed that human immunoglobulin (IgG) can be immobilized on a glass slide, only if the surface was decorated with OTS-SAMs and if the OTS-SAMs were pretreated with oxygen plasma. The protein immobilized on the oxygen-plasma-treated surface can only be recognized by using a highly specific antibody, FITC-anti-IgG, but not FITC-anti-biotin.  相似文献   

16.
We use atomic force microscopy (AFM) to determine the frictional properties of nanoscale single-asperity contacts involving octadecyltrichlorosilane (OTS) monolayers and silicon. Quantitative AFM measurements in the wearless regime are performed using both uncoated and OTS-coated silicon AFM tips in contact with both uncoated and OTS-coated silicon surfaces, providing four pairs of either self-mated or unmated interfaces. Striking differences in the frictional responses of the four pairs of interfaces are found. First, lower friction occurs with OTS present on either the tip or substrate, and friction is yet lower when OTS is present on both. Second, the shape of the friction versus load plot strongly depends on whether the substrate is coated with OTS, regardless of whether the tip is coated. Uncoated substrates exhibit the common sublinear dependence, consistent with friction being directly proportional to the area of contact. However, coated substrates exhibit an unusual superlinear dependence. These results can be explained qualitatively by invoking molecular plowing as a significant contribution to the frictional behavior of OTS. Direct in situ comparison of two intrinsic OTS structural phases on the substrate is also performed. We observe frictional contrast for different local molecular packing densities of the otherwise identical molecules. The phase with lower packing density exhibits higher friction, in agreement with related previous work, but decisively observed here in single, continuous images involving the same molecules. Lateral stiffness measurements show no distinction between the two OTS structural phases, demonstrating that the difference in friction is not due to divergent stiffnesses of the two phases. Therefore, the packing density directly affects the interface's intrinsic resistance to friction, that is, the interfacial shear strength.  相似文献   

17.
《Supramolecular Science》1996,3(1-3):123-130
(Alkylsilane/fluoroalkylsilane) mixed monolayers were immobilized covalently on a silicon wafer surface with stable surface structure. Atomic force microscopic observation of the n-octadecyltrichlorosilane (OTS)/[2-(perfluorooctyl)ethyl]trichlorosilane (FOETS) mixed monolayer revealed that the crystalline OTS circular domains of ca. 1–2μm in diameter were surrounded by a sealike amorphous FOETS matrix, even though the molar fraction of OTS was above 75%. Also, the phaseseparated monolayer can be prepared from FOETS, and a non-polymerizable and crystallizable amphiphile such as lignoceric acid (LA). The phase separation of the (alkylsilane/fluoroalkylsilane) mixed monolayer might be attributed to both faster spreading of FOETS molecules on the water surface and the crystallizable characteristics of alkylsilane molecules. The mixed monolayer of crystalline alkylsilane (OTS) and amorphous alkylsilane (n-dodecyltrichlorosilane, DDTS) formed a phase-separated structure on the water surface because of the crystallizable characteristics of OTS. Lateral force microscopic (LFM) observation revealed that the order of the magnitude of lateral force generated against the silicon nitride tip was: n-triacontyltrichlorosilane (TATS) domain with longer alkyl chain > amorphous FOETS matrix > crystalline OTS domain. On the other hand, scanning viscoelasticity microscopic observation revealed that the order of the magnitude of modulus was: Si substrate > crystalline OTS domain > amorphous FOETS matrix.  相似文献   

18.
Three model flavonoid-based bioactive molecules with different lipid chain lengths (RuCn: n=8, 12, 18) were newly synthesized. The surface properties [surface pressure (π)-area (A), surface potential (ΔV)-surface pressure (π) and dipole moment (u(⊥))-surface pressure (π)] of pure RuCn and the lecithin membrane compounds had been investigated by using the Langmuir monolayer technology. The results suggested that the distinctive monolayer behavior of RuCn is strongly dependent on the lipid chain length. The great differences in the monolayer properties brought by the lipid chain length could be attributed to two major factors: (i) the ionization degree of the bulky hydrophilic head group (including hydroxyl and NH groups) alters its local field solely via the surface potential; (ii) tring molecular (or dipole) packing density within monolayers. The excess Gibbs energy (ΔG((ex))) calculated for the RuCn-lecithin mixed monolayers infers that higher stability of the mixed monolayer can be strengthened as the lipid chain length decreases. And the addition of RuCn into lecithin membrane may increase the total u(⊥) of the binary mixed monolayers, which could inhibit the hydration of the lecithin's hydrophilic head groups. The shorter the lipid chain length of RuCn (e.g., RuC8) is, the higher the surface activity can be. Our findings provide a molecular basis for the application of such class of biomolecules in the functional food, cosmetics and medicine.  相似文献   

19.
单壁碳纳米管在金表面的图形化组装   总被引:2,自引:0,他引:2  
利用湿法化学组装技术在金表面得到了图形化的单壁碳纳米管阵列.在混酸氧化条件下,初合成的交缠状态的单壁纳米管被截短成带有羧基等功能化末端的短管.这些功能化的短管在缩合剂DCC的作用下与氨基/甲基图形化表面进行缩合反应时,纳米管将选择性地结合到氨基区域从而形成规则的纳米管阵列.  相似文献   

20.
With the aim of introducing primary amino groups on the surface of poly(ethylene terephthalate) (PET), two methods were compared—the use of ammonia or a combination of nitrogen and hydrogen low-pressure microwave plasma. Several plasma parameters were optimized on the reactor to increase the –NH2 surface density, which was estimated by colorimetric titration and X-ray photoelectron spectroscopy (XPS). These techniques show that whatever the plasma treatment, almost 2 –NH2/nm2 are incorporated on PET films. Emission spectroscopy highlighted a correlation between the density of primary amino groups and the ratio between an NH peak intensity and an Ar peak intensity (INH/IAr). Variation in surface hydrophilicity with aging in air after plasma treatment was monitored with contact angle measurements and showed a hydrophobic recovery. This was confirmed by XPS, which suggests also that surfaces treated by NH3 plasma are more stable than surfaces treated by N2/H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号