首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interactions of the La(III) cations with three anions (X), nitrate, chloride and perchlorate, in aqueous solutions in the pH range 4.0–6.5, were studied by139La NMR spectroscopy. A single model, involving the formation of the contact ion-pair (inner-sphere complex) (LaX)2+ was successfully and quantitatively applied to the chemical shift and the transverse relaxation rate data. Both measurements gave values for the thermodynamic equilibrium constants of formation of (LaX)2+ (K th ) in good agreement (average K th =0.45±0.05; 0.15±0.09; 0.03±0.01, respectively for nitrate, chloride and perchlorate). The complexes are characterized by chemical shifts of –25, 22 and –3.1 ppm and by transverse relaxation rates of 11.2, 5 and 1.65 kHz respectively for nitrate, chloride and perchlorate. The139La quadrupolar relaxation rate is not controlled by the reorientational correlation time. This finding is discussed, and it is suggested that the very fast exchange of water molecules in the first coordination sphere of La(III) is responsible for the time fluctuation of the electric field gradient at the139La nucleus site.  相似文献   

2.
Chemical shifts of 1H and 13C NMR of series of methylimidazolium salts (MIM+, X=Br, BF4 and PF6) function on the length of alkyl groups on the ring, type of solvents and the concentration. The bromides series demonstrate more chemical shift variation on H2 upon the change of solvents and concentration. Unexpected H-D exchange reactions were also observed in the MIM+Br by using CD3OD and D2O. The exchange rates strongly depend on the length of the alkyl group, which could cause more steric factor to reduce the interaction between deuterium atom from solvent and C2 of the ring.  相似文献   

3.
The 1H NMR chemical shifts of the C(α)? H protons of arylmethyl triphenylphosphonium ions in CD2Cl2 solution strongly depend on the counteranions X?. The values for the benzhydryl derivatives Ph2CH? PPh3+ X?, for example, range from δH=8.25 (X?=Cl?) over 6.23 (X?=BF4?) to 5.72 ppm (X?=BPh4?). Similar, albeit weaker, counterion‐induced shifts are observed for the ortho‐protons of all aryl groups. Concentration‐dependent NMR studies show that the large shifts result from the deshielding of the protons by the anions, which decreases in the order Cl? > Br? ? BF4? > SbF6?. For the less bulky derivatives PhCH2? PPh3+ X?, we also find C? H???Ph interactions between C(α)? H and a phenyl group of the BPh4? anion, which result in upfield NMR chemical shifts of the C(α)? H protons. These interactions could also be observed in crystals of (p‐CF3‐C6H4)CH2? PPh3+ BPh4?. However, the dominant effects causing the counterion‐induced shifts in the NMR spectra are the C? H???X? hydrogen bonds between the phosphonium ion and anions, in particular Cl? or Br?. This observation contradicts earlier interpretations which assigned these shifts predominantly to the ring current of the BPh4? anions. The concentration dependence of the 1H NMR chemical shifts allowed us to determine the dissociation constants of the phosphonium salts in CD2Cl2 solution. The cation–anion interactions increase with the acidity of the C(α)? H protons and the basicity of the anion. The existence of C? H???X? hydrogen bonds between the cations and anions is confirmed by quantum chemical calculations of the ion pair structures, as well as by X‐ray analyses of the crystals. The IR spectra of the Cl? and Br? salts in CD2Cl2 solution show strong red‐shifts of the C? H stretch bands. The C? H stretch bands of the tetrafluoroborate salt PhCH2? PPh3+ BF4? in CD2Cl2, however, show a blue‐shift compared to the corresponding BPh4? salt.  相似文献   

4.
A series of chiral pyrrolidinium salts containing (1 S)-endo-(−)-born-2-yloxymethyl substituent in the structure of the cation and six different anions: chloride, tetrafluoroborate [BF4], hexafluorophosphate [PF6], trifluoromethanesulfonate [OTf], bis(trifluoromethylsulfonyl)imide [NTf2], bis(pentafluoroethylsulfonyl)imide [NPf2] and perfluorobutanesulfonate [C4FS] were efficiently prepared and extensively characterized. The enantiomeric purity of them was confirmed by NMR analysis with a chemical shift reagent. All salts were characterized with the specific rotation, the solubility in commonly used solvents, thermal properties, including phase transition temperatures and thermal stability. Salts with [PF6], [C4FS], [NTf2] and [NPf2] anions were classified as chiral ionic liquids (CILs). Moreover, salts with [NTf2] and [NPf2] anions were in the liquid state at room temperature and below. Therefore, density and dynamic viscosity, the surface tension and the contact angle on three different surfaces were also measured for them. Additionally, these chiral ionic liquids were tested as solvents in Diels-Alder reaction.  相似文献   

5.
Reaction of 2,5-dimercapto-1,3,4-thiadiazole with ammonia or pyridine gives monoammonium or monopyridinium slats, and the reaction with hydrazine hydrate gives both mono- and dihydrazine salts, which was confirmed by alkylation of the salts obtained. Difference in the chemical shifts of the SCH2R groups was found in the1H NMR spectra of the mono- and dialkyl-substituted 2,5-dimercapto-1,3,4-thiadiazoles.Institute of Chemistry, Vilnius LT-2600, LithuaniaTranslated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 682–687, May, 2000.  相似文献   

6.
The Zintl phases M4Si4 with M = Na, K, Rb, Cs, and Ba2Si4 feature a common structural unit, the Si44– anion. The coordination of the anions by the cations varies significantly. This allows a systematic investigation of the bonding situation of the anions by 29Si NMR spectroscopy. The compounds were characterized by powder X‐ray diffraction, differential thermal analysis, magnetic susceptibility measurements, 23Na, 29Si, 87Rb, 133Cs NMR spectroscopy, and quantum mechanical calculation of the NMR coupling parameter. The chemical bonding was investigated by quantum mechanical calculations of the electron localizability indicator (ELI). Synthesis of the compounds results for all of them in single phase material. A systematic increase of the isotropic 29Si NMR signal shift with increasing atomic number of the cations is observed by NMR experiments and quantum mechanical calculation of the NMR coupling parameter. The agreement of experimental and theoretical results is very good allowing an unambiguous assignment of the NMR signals to the atomic sites. Quantum mechanical modelling of the NMR shift parameter indicates a dominant influence of the cations on the isotropic 29Si NMR signal shift. In contrast to this a negligible influence of the geometry of the anions on the NMR signal shift is obtained by these model calculations. The origin of the systematic variation of the isotropic NMR signal shift is not yet clear although an influence of the charge transfer estimated by calculation using the QTAIM approach is indicated.  相似文献   

7.
Heteroassociation of caffeine (CAF) with the antibiotic mitoxanthrone (novatrone, NOV) in aqueous solution was studied by one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopy (500 MHz). The concentration and temperature dependences of the proton chemical shifts of the molecules in aqueous solution have been measured. The equilibrium constants of heteroassociation between CAF and NOV and the limiting proton chemical shifts of the aromatic ligands of the associates have been determined. The most plausible structure of the 1:1 CAF–NOV heterocomplex in aqueous solution was inferred from the calculated values of the induced proton chemical shifts and quantum-mechanical screening curves for CAF and NOV. The thermodynamic parameters of the formation of the CAF–NOV heterocomplex have been calculated. The relatively high heteroassociation constant (K = 256 ± 31 M–1, T = 318 K), the positive value of entropy for heteroassociation [ S = 15.3 ± 4.0 J/(moleK)], and the structural features of the chromophore of the novatrone molecule indicate that hydrophobic interactions play a significant role in stabilization of the CAF–NOV heterocomplex.  相似文献   

8.
Carbon-13 magnetic resonance shifts of solvent carbon atoms were measured as a function of solute concentration for a series of alkali metal salts inN-methyl-2-pyrrolidone and 3-methyl-2-oxazolidone, which are 5-membered dipolar-aprotic heterocyclic solvents of dielectric constants 32.0 and 77.5, respectively. Chemical shifts were linear functions of solute molarities in the concentration range of 0.19–0.75M. Cation-solvent interaction decreased in tenacity as Li+>Na+>K+. Shifts were anion dependent for both solvents, and the magnitude of solvent structure shielding, by solute anions, decreased as tetraphenylborate > thiocyanate > perchlorate. The carbonyl shifts ofN-methyl-2-pyrrolidone and 3-methyl-2-oxazolidone were compared to other heterocyclic solvents.  相似文献   

9.
The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol‐d4 (CD3OD), and chloroform‐d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of various chemicals on the cloud point (CP) of nonionic surfactant Triton X-405 (TX-405) in aqueous solutions has been investigated. In the measurements of cloud point temperatures, UV–visible spectrophotometer was used instead of visual observation. The values of CP for Triton X-405 could not be measured directly because TX-405 had an average number of oxyethylene units per molecule, p ≈ 35 and a CP > 100 °C. To avoid additional measurements under pressure, TX-405 had their CP lowered below the normal boiling point of their solutions by adding the salting-out, CP-lowering salts at various concentrations, measuring the depressed CP values and extrapolating them to zero salt concentration. The CP values decrease linearly with increasing concentration of salts at studied concentrations. The results showed that the addition of the simple salts and nonionic surfactant Triton X-114 (TX-114) which are infinitely miscible with water decreased the cloud point of the TX-405. In this study, the real CP values of TX-405 which are merely listed as >100 °C in the literature was found as 116 ± 1 °C in various samples. In the lyotropic series, it is expected that the effect of F > Cl > Br will be on the decrease in CP, because the ionic sizes increase along the group consequently decreasing the formal charge density on anion, thus lowering the attraction on anion and thereby lowering the attraction of water. The order of CP depression for the other anions is as follows: PO43− > SO42− > NO3 > Br. This means that electrolyte containing trivalent anions is more effective at salting-out the PEO chain than those containing divalent anions and monovalent anions. Cations effectiveness is present in the following order for change: Na+ > K+ > NH4+ because of their effect on water structure and their hydrophilicity. Overall the electrolytes and nonelectrolytes have a large amount of effect on CP of nonionic surfactant, because of their effect on water structure and their hydrophilicity.  相似文献   

11.
Aqueous poly(N-vinylacetamide) (PNVA) solution was found to exhibit the cloud point in the presence of salt. This cloud point was shown to correspond to a liquid-liquid phase separation, as confirmed when the PNVA-salt solutions were maintained at a temperature above the cloud point. The upper layer had a higher polymer concentration and a lower salt concentration than those in the lower layer. Thus interaction between PNVA and salts are repulsive. The lower critical solution temperatures were estimated to be 18±1°C for 1.25 molal (NH4)2SO4 and 25±1°C for 0.76 molal Na2SO4. Divalent anions such as SO 2– 4 , SO 2– 3 , HPO 2– 4 and CO 2– 3 were effective in causing turbidity when examined at 25°C. Dependence of the effect on the cationic species was similar to but significantly different from that for acetyltetraglycine ethylester. The cloud points of PNVA decreased linearly with the increase of the polymer concentration at a fixed salt concentration or with the increase of the salt concentration at a fixed polymer concentration. A parameter analogous to the salting-out constant was empirically derived from the dependencies of the cloud points on the concentrations of polymer and salt.  相似文献   

12.
13.
Caffeine (1,3,7-trimethylxanthine) is a chemical substance associated with everyday human life. In order to recognize caffeine in water, six water-soluble acyclic phane compounds composed of three aromatic rings were examined as artificial receptors. 1H NMR titration experiments revealed that 6,6′-[1,3-phenylenebis(carbonylimino)]bis-1,3-naphthalenedisulfonate had the highest binding ability for caffeine, with a binding constant (Kb) of 127±5 M−1 at 300 K. While this phane compound also formed a complex with theophylline (1,3-dimethylxanthine) at around half the value of the binding constant for caffeine (Kb=64±4 M−1), it showed weak or little complexation for adenosine, guanosine, inosine, and their 5′-phosphates (sodium salts of adenylic acid, guanylic acid, and inosinic acid).  相似文献   

14.
Microscopic information on the complexation of Be2+ with cyclo-tri-μ-imidotriphosphate anions in aqueous solution has been gained by both 9Be and 31P NMR techniques at −2.3 °C. Separate NMR signals corresponding to free and complexed species have been observed in both spectra. Based on an empirical additivity rule, i.e., proportionality observed between the 9Be NMR chemical shift values and the number of coordinating atoms of ligand molecules, the 9Be NMR spectra have been deconvoluted. By precise equilibrium analyses, the formation of [BeX(H2O)3]+ and [BeX2(H2O)2]0 (X = non-bridging oxygen donor as a coordination atom in the phosphate groups) has been verified, and the formation of complexes coordinating with the nitrogen atoms of the cyclic framework in the ligand molecule has been excluded. Instead, the formation of one-to-one (ML) complexes, one-to-two (ML2), together with two-to-one (M2L) complexes (L = cP3O6(NH)3) has been disclosed, the stability constants of which have been evaluated as log KML = 3.87 ± 0.03 (mol dm−3)−1, log KML2 = 2.43 ± 0.03 (mol dm−3)−2 and log KM2L = 1.30 ± 0.02 (mol dm−3)−2, respectively. 31P NMR spectra measured concurrently have verified the formation of the complexes estimated by the 9Be NMR measurement. Intrinsic 31P NMR chemical shift values of the phosphorus atoms belonging to ligand molecules complexed with Be2+, together with the 31P-31P spin-spin coupling constants have been determined.  相似文献   

15.
Stable cyanomethylcyclohexadienyl anions generated in two-electron reduction of isomeric tolunitriles by potassium in liquid ammonia were detected by NMR spectroscopy. The chemical shifts in these anions were obtained from density functional (PBE/3z) quantum chemical calculations and the electron density distributions for the anions were calculated in the framework of the NBO approach at the HF/6-31+G* level of theory. The experimental and calculated δC values are in good agreement. Changes in the δC values on going from the starting nitriles to the corresponding anions are linearly related to the calculated π-electron densities on the pentadienyl ring carbon atoms. Dedicated to the memory of Academician V. A. Koptyug on the occasion of the 75th anniversary of his birth. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 940–944, June, 2006.  相似文献   

16.
The 19F and 31P NMR spectral parameters of a series of meta and para substituted phenylphosphonic difluorides were found to be linearly related to the substituent parameters: the phosphorus chemical shifts correlated with Hammett's σ constant, the fluorine chemical shifts with Taft's σR parameter and the phosphorus–fluorine coupling constants with σ+.  相似文献   

17.
Nitrogen‐rich heterocyclic bases and oxygen‐rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4‐amino‐1,2,4‐trizole (A), 1‐amino‐1,2,4‐trizole (B), and 5‐aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2)2 (II), HClO4 (III), and HC(NO2)3 (IV), are studied using DFT calculations at the B97‐D/6‐311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative ΔrGm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3?>N(NO2)2?>ClO4?>C(NO2)3?, and C+>B+>A+. In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen‐bond energy (EH,tot) leads to a higher melting point. The order of cations and anions on charge transfer (q), second‐order perturbation energy (E2), and binding energy (Eb) are the same to that of EH,tot, so larger q leads to larger E2, Eb, and EH,tot. All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5‐aminotetrazole and HClO4 are the preferred base and acid, respectively.  相似文献   

18.
A new molecular tweezers, viz., bisstyryl dye containing two 18-crown-6-ether moieties and one p-phenylenedimethylene spacer group, was synthesized. Complex formation of this dye and a model monostyryl dye with ions EtNH3 + and NH3 +(CH2)nNH3 + (n = 2−6) in MeCN was studied using spectrophotometry and 1H NMR spectroscopy. The homoditopic bisstyryl dye and diammonium salts form strong supramolecular complexes with pseudocyclic structure.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 656–662, March, 2005.  相似文献   

19.
Cesium-133 chemical shifts were measured in a number of solvents as a function of salt concentration and of the counterion. Infinite-dilution chemical shifts (vs. aqueous Cs+ ion at infinite dilution) ranged from +59.8 ppm for nitromethane solutions to –29.4 ppm for pyridine. In general, the magnitude of the downfield chemical shift reflected the donor ability of the solvents. Ion-pair formation constants were calculated from the concentration dependences of133Cs chemical shifts in several nonaqueous solvents.  相似文献   

20.
13C NMR data for a series of arylthallium trifluoroacetates (ArTlX2, X = OCOCF3) are reported and assigned. The range of carbon—thallium couplings to be expected, the dependence on the disposition of coupled nuclei, and chemical shift effects are discussed. The Tl(OCOCF3)2 group is shown to be a powerful electron withdrawing group, from both the 13C data and 19F substituent chemical shifts of the p-fluorophenyl derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号