首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Fourier transform infrared spectra of fumaryl chloride 1 isolated in an argon matrix at 10 K have been analyzed. The comparison between the ab initio HF/6-31G calculated infrared spectra with the experimental ones reveals the existence of three planar conformers, the cis cis 1a, the cis trans 1b and the trans trans 1c. Laser UV irradiation of 1 at lambda = 340 nm yields maleoyl chloride 2 by a carbon carbon double bond photoisomerization process. The first identification of this compound was performed by comparison of the experimental infrared spectra with the calculated ones at the MP2/6-1G** level. AM1 semiempirical and ab initio calculations were used to calculate the structure and the relative stability of the three non planar maleoyl chloride conformers.  相似文献   

2.
The FT-IR spectra of two diastereomers of 2,3-butanediol, (R,S) and (S,S), isolated in low-temperature argon and xenon matrixes were studied, allowing the identification of two different conformers for each compound. These conformers were characterized by a +/-gauche arrangement around the O-C-C-O dihedral angle, thus enabling the establishment of a very weak intramolecular hydrogen bond of the O...H-O type. No other forms of these compounds were identified in matrixes, despite the fact that these four conformers had calculated relative energies from 0 to 5.1 kJ mol(-1) and were expected to be thermally populated from 50 to 6% in the gaseous phase of each compound. The nonobservation of additional conformers was explained in terms of low barriers to intramolecular rotation, resulting in the conformational relaxation of the compounds during deposition of the matrixes. The barriers to internal rotation of the OH groups were computed to be less than 4 kJ mol(-1) and are easily overcome in matrixes within the family of conformers with the same heavy atom backbone. The barriers for intramolecular rearrangement of the O-C-C-O dihedral angle in both diastereomers were calculated to range from 20 to 30 kJ mol(-1). Interconversions between the latter conformers were not observed in matrixes, even after annealing up to 65 K. Energy calculations, barriers, and calculated infrared spectra were carried out at the DFT(B3LYP)/6-311++G theory. Additional MP2/6-311++G calculations of energies and vibrational frequencies were performed on the most relevant conformers. Finally, independent estimations of the hydrogen-bond enthalpy in the studied molecules were also obtained based on theoretical structural data and from vibrational frequencies (using well-established empirical correlations). The obtained values for -DeltaH for both diastereomers of 2,3-butanediol amount to ca. 6-8 kJ mol(-1).  相似文献   

3.
Monomeric 3,6-dithiopyridazine (3-mercapto- 6(1H)-pyridazinethione) was studied using the matrix-isolation method combined with quantum chemical calculations. The monomers of 3,6-dithiopyridazine, trapped from the gas phase into a low-temperature Ar matrix, were found to adopt the thione-thiol structure. In agreement with this experimental observation, the thione-thiol form was predicted (at the QCISD level) to be more stable by 13.5 kJ mol(-1) and by 39.6 kJ mol(-1) than the dithiol and the dithione tautomers, respectively. Monomers of 3,6-dithiopyridazine isolated in Ar matrixes were then irradiated with broadband UV (λ > 335 nm) light. Upon such irradiation, the thione-thiol form of the compound converted into the dithiol tautomer. The same phototransformation was observed when monochromatic λ = 385 nm laser light was used for irradiation. This allowed a first observation and spectral characterization of the dithiol form of 3,6-dithiopyridazine. Subsequent irradiation of the UV-generated dithiol tautomer with shorter-wavelength UV (λ > 275 nm) light led to partial repopulation of the thione-thiol form. Spectral signatures of the analogous photoreversibility were also found for the phototautomeric transformation in the model compound 3-thiopyridazine. The reliability of the QCISD predictions of relative energies of thiol and thione tautomeric forms was tested on the archetype example of 2-thiopyridine. For this compound, the comparison of the computed relative energy 10.9 kJ mol(-1) with the experimental estimate 10.0 ± 1.5 kJ mol(-1) (both in favor of the thiol form) was more than satisfactory.  相似文献   

4.
Diketoacid HIV-1 integrase inhibitors: An ab initio study   总被引:2,自引:0,他引:2  
The stable tautomeric forms of two representative arene-substituted diketoacid HIV-1 integrase inhibitors, 5-ClTEP and L-731,988, were investigated by B3LYP with 6-31G*, 6-31G(d,p), and 6-31+G(d,p) basis sets. Optimization with MP2/6-31G* was also performed for 5-ClTEP. The solvation effect was considered using a conductor-like screening model. With the density functional theory method, the trans diketo conformations are more stable than the cis conformers. The difference is 14 kJ mol(-1) for 5-ClTEP and 33 kJ mol(-1) for L-731,988. Two trans diketo structures were obtained. The difference between these two trans diketo structures is less than 4 kJ mol(-1) calculated at the B3LYP/6-311+G(3df,2p) level. Two enol forms prevail over the diketo tautomers and are calculated to have the same free energy. Because there is no barrier observed between these two enol forms, they can interchange easily such that a delocalized transition state is suggested to be the observed form. Contradictory to the results of the MP2 method that predicts a preference for the trans diketo forms, the B3LYP method predicts a preference for the enol tautomers, which is in agreement with the experimental results.  相似文献   

5.
The conformational behavior and infrared spectrum of l-phenylalanine were studied by matrix-isolation infrared spectroscopy and DFT [B3LYP/6-311++G(d,p)] calculations. The fourteen most stable structures were predicted to differ in energy by less than 10 kJ mol(-1), eight of them with abundances higher than 5% at the temperature of evaporation of the compound (423 K). Experimental results suggest that six conformers contribute to the spectrum of the isolated compound, whereas two conformers (IIb(3) and IIIb(3)) relax in matrix to a more stable form (IIb(2)) due to low energy barriers for conformational isomerization (conformational cooling). The two lowest-energy conformers (Ib(1), Ia) differ only in the arrangement of the amino acid group relative to the phenyl ring; they exhibit a relatively strong stabilizing intramolecular hydrogen bond of the O-H...N type and the carboxylic group in the trans configuration (O=C-O-H dihedral angle ca. 180 degrees ). Type II conformers have a weaker H-bond of the N-H...O=C type, but they bear the more favorable cis arrangement of the carboxylic group. Being considerably more flexible, type II conformers are stabilized by entropy and the relative abundances of two conformers of this type (IIb(2) and IIc(1)) are shown to significantly increase with temperature due to entropic stabilization. At 423 K, these conformers are found to be the first and third most abundant species present in the conformational equilibrium, with relative populations of ca. 15% each, whereas their populations could be expected to be only ca. 5% if entropy effects were not taken into consideration. Indeed, phenylalanine can be considered a notable example of a molecule where entropy plays an essential role in determining the relative abundance of the possible low-energy conformational states and then, the thermodynamics of the compound, even at moderate temperatures. Upon UV irradiation (lambda > 235 nm) of the matrix-isolated compound, unimolecular photodecomposition of phenylalanine is observed with production of CO(2) and phenethylamine.  相似文献   

6.
We report on the first experimental observation of formic acid dimers composed of two molecules of the higher-energy cis conformer. The cis-cis formic acid dimers are prepared in an argon matrix by selective vibrational excitation of the ground state trans conformer (deuterated form HCOOD) combined with thermal annealing of the matrix at about 30 K. Five cis-cis formic acid dimers are predicted by ab initio calculations (interaction energies from -16.9 to -27.2 kJ mol(-1)), and these structures are used for the assignment of the experimental spectra. Selective vibrational excitation of the obtained cis-cis dimers leads to the formation of several trans-cis dimers, which supports the proposed assignments.  相似文献   

7.
Squaric acid dimethyl ester (C(6)O(4)H(6); 3,4-dimethoxycyclobut-3-ene-1,2-dione; DCD) was studied by matrix isolation infrared spectroscopy and by density functional theory (B3LYP) and ab initio (MP2) calculations with the 6-31++G(d,p) and 6-311++G(d,p) basis sets. Three conformers of the compound were theoretically predicted. The two most stable conformers were identified in low-temperature argon matrixes and the energy gap between them was determined. The trans-trans conformer (C(2)(v)) was found to be more stable than the cis-trans form (C(s)) by 4.2 kJ mol(-1), in consonance with the theoretical predictions (MP2 calcd = 3.9 kJ mol(-1)). In situ broadband UV irradiation (lambda > 337 nm) of the matrix-isolated compound was found to induce the ring-opening reaction leading to production of the bisketene, 2,3-dimethoxybuta-1,3-diene-1,4-dione as well as the trans-trans --> cis-trans conformational isomerization. The latter phototransformation allowed separation of the infrared spectra of the two conformers initially trapped into a low-temperature matrix. Upon higher energy irradiation (lambda > 235 nm), the main observed photoproducts were CO and deltic acid dimethyl ester (C(5)O(3)H(6); 2,3-dimethoxycycloprop-2-en-1-one), the latter being obtained in two different conformations (trans-trans and cis-trans). According to the experimental data, deltic acid dimethyl ester is produced by decarbonylation of the initially formed bisketene and not by direct CO extrusion from DCD.  相似文献   

8.
Trifluoronitrosomethane (CF3NO) was trapped in rare gas matrixes and irradiated at 633 and 670 nm. The infrared spectra of the postirradiation samples exhibit features consistent with cis and trans conformers of bis(trifluoromethyl)dioxodiazine, a previously uncharacterized species. The concentration dependence of the formation of the dimer is consistent with a mechanism in which monomers trapped in adjacent sites undergo excitation and subsequent reaction. The dimers reversibly form the monomer when irradiated with ultraviolet light. Density functional theory was used to determine the structure of the dimers and predict their infrared and Raman spectra. The predicted vibrational frequencies are in agreement with those observed. A third (skewed) conformation was predicted to have a triplet ground state, but no evidence of this species was observed. All three dimers exhibit significant diradical character, as evidenced by comparatively low N-N and high N-O stretching frequencies. Transition-state calculations predict the dimerization barrier to range from 17.1 (cis) to 35.0 (trans) kJ mol(-1) for the singlet dimers and to be 62.1 kJ mol(-1) for the triplet dimer. This is an example of nitroso dimerization that requires electronic excitation to proceed.  相似文献   

9.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

10.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

12.
Methyl 4-chloro-5-phenylisoxazole-3-carboxylate (MCPIC) has been synthesized, isolated in low temperature argon and xenon matrices, and studied by FTIR spectroscopy. The characterization of the low energy conformers of MCPIC was made by undertaking a systematic investigation of the DFT(B3LYP)/6-311++G(d,p) potential energy surface of the molecule. The theoretical calculations predicted the existence of three low energy conformers. Two of them (I and II) were observed experimentally in the cryogenic matrices. The third one (III) was found to be converted into conformer II during deposition of the matrices, a result that is in agreement with the predicted low III → II energy barrier (<0.3 kJ mol(-1)). In situ UV irradiation (λ > 235 nm) of matrix-isolated MCPIC yielded as final photoproduct the corresponding oxazole (methyl 4-chloro-5-phenyl-1,3-oxazole-2-carboxylate). Identification of the azirine and nitrile-ylide intermediates in the spectra of the irradiated matrices confirmed their mechanistic relevance in the isoxazole → oxazole photoisomerization.  相似文献   

13.
14.
The structure, preferred conformers, vibrational spectrum, and photochemical behavior of the novel azirine, methyl 2-chloro-3-methyl-2H-azirine-2-carboxylate (MCMAC) were investigated in low-temperature matrixes and in the neat solid amorphous state by infrared spectroscopy and quantum-chemical calculations. Two conformers of the compound were observed in argon, krypton, and xenon matrixes, in agreement with the DFT(B3LYP)/6-311++G(d,p) and MP2/6-311++G(d,p) theoretical calculations. Both conformers were found to exhibit the carboxylic ester group in the cis conformation, differing in the arrangement defined by the O=C-C-Cl dihedral angle (cis and trans, for Ct and Cc forms, respectively). The Ct conformer was found to be the most stable conformer in the gaseous phase as well as in both argon and krypton matrixes, whereas the more polar Cc conformer became the most stable form in the xenon matrix and in the neat solid amorphous phase. In situ broadband UV (lambda > 235 nm) excitation of matrix-isolated MCMAC led to azirine ring C-C and C-N bond cleavages, the latter process corresponding to the most efficient reaction channel. The photochemical cleavage of the C-N bond had never been previously observed in the case of aliphatic 2H-azirines. Two electron withdrawing substituents (methoxycarbonyl group and chlorine atom) are connected to the azirine ring in the novel MCMAC azirine. The simultaneous presence of these two groups accelerates intersystem crossing toward the triplet state where cleavage of the C-N bond takes place. The primary photoproducts resulting from the C-N and C-C ring-opening reactions were also found to undergo further photochemical decarbonylation or decarboxylation reactions.  相似文献   

15.
The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ~65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the trans conformation and undergoes isomerization to the cis form upon irradiation at λ < 227.5 nm. Cyclopropene, propyne, allene, and CO were also identified in the irradiated matrices (in particular at the later stages of irradiation), suggesting that the photoproduced aldehydes partially decarbonylate during the performed photochemical experiments.  相似文献   

16.
用量子化学 P M3 方法优化了 N, N二( N亚甲基2吡咯烷酮) 甘氨酸( C12 H19 N3 O4) 分子的顺式和反式两种构型;计算了分子的电离能、电子亲合能、电荷密度和前线轨道,并研究了该分子的配位性能。结果表明标题化合物稳定,顺式构型分子内有氢键,反式则没有。 P M3 计算的标题化合物顺式构型几何参数与实验测定结果一致,顺式构型能与希土金属离子形成稳定的配合物。  相似文献   

17.
The energies, vibrational frequencies and IR intensities of cis- and trans-N-acetyl-L-alanine (NAAL) are computed using the density functional theory (B3LYP) combined with the 6-311G(d, p) basis set. The trans conformer is characterized by an intramolecular NH ... O hydrogen bond leading to the formation of a five-membered ring and is by 23 kJ mol(-1) more stable than the cis conformer. The difference between the vibrational frequencies and IR intensities computed for the two conformers is discussed. The IR spectra at different temperatures and the Raman spectra of solid NAAL and its deuterated counterpart are investigated and discussed. The frequencies of the v(OH) vibration and the isotopic ratio suggest the formation of short OH ... O hydrogen bonds in the solid state. The NH group seems also to be involved in a weak hydrogen bond.  相似文献   

18.
The structure of dimethyl 5-methyl-1H,3H-pyrrolo[1,2-c][1,3]thiazole-6,7-dicarboxylate 2,2-dioxide (PTD) was investigated in low-temperature noble gas matrixes (Ar, Kr, Xe), amorphous solid, and the crystalline state by infrared spectroscopy and computational methods. The geometry of PTD conformers is defined by the orientation of two methyl ester groups, which may adopt pseudo-trans or pseudo-cis positions in relation to the pyrrolo-thiazole system. For both methyl ester groups, the latter arrangement was predicted by the calculations to be energetically the most favorable in the isolated molecule. The envelope form of the thiazolidine ring is present in all conformers, with the sulfur atom placed in the apex position, while the pyrrole ring is almost planar. Three types of conformers differing in the orientation of the methyl ester groups relative to the pyrrolo-thiazole system (cis/cis, trans/cis, cis/trans) were identified in the matrixes. The cis/cis forms were found to be the most stable ones in both gaseous state and argon matrixes. On the other hand, the more polar trans/cis forms were found to be stabilized in the more polarizable krypton and xenon matrixes as well as in the neat amorphous and crystalline phases. On the basis of annealing experiments, performed in argon and xenon matrixes up to 35 and 68 K, respectively, conformational changes preceding the aggregation of the compound are suggested.  相似文献   

19.
The trans-cis isomerization of the styrylpyridine carbon-carbon double bond induced by visible light irradiation in fac-[Re(CO)(3)(bpy)(stpy)](+) (bpy = 2,2'-bipyridine; stpy = t-4-styrylpyridine) has been investigated by means of quantum-chemical methods. The structures of the various cis and trans conformers of [Re(CO)(3)(bpy)(stpy)](+) have been optimized at the density functional theory (DFT) level. Three rotational conformers for the most stable trans isomer lie within 2.3 kJ mol(-1) each other. The energy difference between the cis and trans isomers is 27.0 kJ mol(-1). The electronic spectroscopy of the most stable conformers has been investigated by time-dependent DFT (TD-DFT) and complete active space self-consistent field/CAS second order perturbation theory (CASSCF/CASPT2) calculations. The lowest absorption bands are dominated by metal-to-ligand charge-transfer (MLCT, d(Re)-->pi*(bpy)) transitions calculated at about 25,000 cm(-1) and by a strong intraligand (1)IL (pi(stpy)-->pi*(stpy)) transition in the near UV region. On the basis of CASSCF potential energy curves (PECs) calculated as a function of the torsion angle of the C=C bond of the styrylpyridine ligand, it is shown that the role of the low-lying MLCT states is important in the photoisomerization mechanism. In contrast to the free organic ligand, in which the singlet mechanism is operational via the (1)IL (S(1)) and electronic ground (S(0)) states, coordination to the rhenium steers the isomerization to the triplet PEC corresponding to the (3)IL state. From the (3)IL(t) (t = trans) the system evolves to the perpendicular intermediate (3)IL(p) (p = perpendicular) following a 90 degrees rotation around the styrylpyridine C=C bond. The metal center acts as a photosensitizer because of the presence of photoactive MLCT states under visible irradiation. The position of the crossing between the (3)IL and electronic ground state PEC determines the quantum yield of the isomerization process.  相似文献   

20.
We have performed ab initio molecular dynamics simulations based on density functional theory to characterize the structural, electronic, and dynamic properties of the three major isomeric forms of the title compound. In agreement with experimental results, calculations with two different parametrizations of the exchange-correlation functional (BLYP and BP) both indicate the cis-C2 form as the most stable isomer. The relative energies of the different forms are, however, small (less than approximately 1-2 kcal/mol), and the three compounds show overall very similar ground-state properties. Larger differences exist in their finite temperature behavior, which is dominated by the facile dissociation of one or both phosphine ligands. The calculated activation energies for phosphine dissociation differ clearly for the trans and the cis isomers and vary in the order trans < cis-C2 less than approximately cis-Ci. Analysis of the electronic structure of the transition states shows that the difference in activation energy between cis and trans isomers can be rationalized in terms of a classic trans effect caused by a molecular orbital spanning the three atomic centers N-W-P. The subtle difference between the two cis isomers, on the other hand, is likely due to an analogous four-center trans effect N-W-W-P which is mediated via metal-metal orbitals and involves ligands on both tungsten atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号