首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The structural, electronic, and vibrational characteristics and energies of the isolated polyoxide clusters B20O30, Al20O30, V20O50, Si20O30H20, and Si20O30F20 and their complexes with the H ion and ammonia complexes Al20O30 · nNH3 have been calculated by the density functional theory B3LYP method with different basis sets. The computation results show that the symmetric closo structure I h with oxygen bridges located above the centers of the faces of an empty [M20] dodecahedron is more favorable for V20O50, Si20O30H20, and Si20O30F20. For B20O30, the cage closo isomer is also more favorable than the other isomers, but its structure is severely distorted as compared to a dodecahedron and has a symmetry close to C 3 . For Al20O30, the I h structure corresponds to a high-lying local minimum of the potential energy surface. For Al20O30, a set of unusual puckshaped isomers of symmetry C i , with different numbers of four-coordinate atoms IVAl and three-coordinate atoms IIIO, was localized; these structures are more than 90 kcal/mol more favorable than the dodecahedron I h . The most favorable isomer of Al20O30 contains twelve four-coordinate atoms IVAl and four five-coordinate atoms VAl. The energies of dissociation of the most favorable M20O30 clusters into the M2O3 (C 2v ) and M4O6 (T d ) fragments and, in the case of Al20O30, also into the Al8O12 (O h ) and Al12O18 (D 3d ) fragments, have been estimated. The conclusion has been drawn that these clusters can, in principle, exist and can be experimentally detected in the isolated state. Analogous calculations have been performed for ammonia complexes Al20O30 · nNH3 with n varying from 1 to 20. The effect of solvation on the relative stability of the dodecahedral and puckshaped isomers of the Al20O30 cluster is observed. The isomers with ammonia molecules in their first coordination sphere become much closer to one another on the energy scale; however, the dodecahedron remains a considerably less favorable intermediate. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 624–635.  相似文献   

2.
[O2]2+2[Ti7F30]2? has been obtained by reaction of TiO2 with a mixture of fluorine and oxygen (pF2/O2 ≈ 300–3500 atm., t ≈ 300–450°C) either as colourless powder or in form of colourless, clear needles. From single crystal studies the spacegroup is P3 - C3i1 (No. 147) with a = 10.192, c = 6.50o Å, Z = 1. The crystal structure has been refined to R = 0.086 [Rw = 0.058] (748 unique reflexions [Fo > 2σ(Fo)]). From the structure determination [O2]2+2[Ti7F30]2? has isolated columns of partially distorted [TiF6] octahedra (- column structure) which are connected only quite loosely by (disordered) O2+ cations. νO2+ is at 1857 cm?1, the magnetic moment μeff = 2.35 B.M. (295 K) is quite as expected for a ‘spin-only’ case.  相似文献   

3.
The state of nickel atoms in LiNi x Sc1 − x O2 solid solutions was studied. The anomalous magnetic characteristics can be accounted for only by the presence of dilution-resistant clusters containing Ni(III) in two states: high- and low-spin. Original Russian Text ? A.A. Selyutin, N.P. Bobrysheva, N.V. Chezhina, A.V. Shchukarev, A.O. Kozin, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 10, pp. 1608–1612. For communication I, see [1].  相似文献   

4.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

5.
The electronic and geometric structures and the dissociation energies of the isolated molecule of heme dimer (heme)2 = (FeC34H32O4N4)2 and its ion (heme) 2 + = (FeC34H32O4N4) 2 + in the states with different multiplicities have been calculated by the density functional theory B3LYP method with the Gen-1 = 6-31G*(Fe) + 6-31G(C,H,N,O) and Gen-2 = 6-311++G*(Fe) + 6-31G*(C,H,N,O) basis sets. The computation results are compared with the analogous calculated data on monomeric heme and hemin+, as well as the previously considered dimeric ferriporphyrin X molecule and ion FeC34H31O4N4) 2 0, + . In the heme dimer cation (heme) 2 + , which is identified in mass spectra, the rings are linked with each other by a pair of Fe carbonyl bridges Fe⋯Ob = C(OH) and a pair of hydrogen bridges OHb⋯N. According to the calculations, the most favorable state for (heme) 2 + is the sextet in which five unpaired electrons are approximately uniformly distributed over the metal atoms, whereas the states with higher multiplicities 8 and 10 are, respectively, 0.15 and 0.20 eV higher on the energy scale. For the neutral dimer (heme)2, the quintet is favorable in which each of the two Fe atoms has two unpaired electrons, and the states with the higher multiplicities 7 and 9 are only 0.10–0.15 eV higher. The calculated energies of dissociation D of the dimers into monomers point to a rather high stability of the (heme) 2 + (D ∼ 1.4 1.4eV) and to a low stability of the neutral dimer (heme)2 (D ∼ 0.3 eV). The R(Fe⋯Ob) distances in the bridges in (heme) 2 + are 0.2–0.4 ? shorter than in (heme)2. The trends in the behavior of the energetic and structural characteristics of the dimers (R(Fe-N), displacements of Fe atoms from the porphyrin ring plane, character of ring distortions, etc.) associated with the involvement of the and AOs of Fe atoms in bonding, as well as the spin density distribution over the Fe atoms and the rings, are analyzed as a function of the multiplicity and charge of the system. Differences in the character of interaction of the heme and ferriporphyrin dimers with molecular oxygen are discussed. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, S.H. Lin, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 7, pp. 1166–1174.  相似文献   

6.
 Single crystals of MgAl2F8(H2O)2 have been obtained under hydrothermal conditions (250°C, 14 d) from a starting mixture of AlF3 and MgAlF5(H2O)2 in a 5% (w/w) HF solution. The crystal structure has been determined and refined from single crystal data (Fmmm (#69), Z = 4, a = 7.2691(7), b = 7.0954(16), c = 12.452(2) ?, 281 structure factors, 27 parameters, R(F 2 > 2σ (F 2)) = 0.0282, wR(F 2 all) = 0.0885). The obtained crystals were systematically twinned according to (010/100/001) as twinning matrix, reflecting the pseudo-tetragonal metric. The crystal structure is composed of perowskite-type layers built of corner sharing AlF6 octahedra with an overall composition of AlF4 which are connected via common fluorine atoms of [MgF4/2(H2O)2/1] octahedra. Group-subgroup relations of MgAl2F8(H2O)2 to WO3(H2O)0.33 and to other M(II)M(III)2 F8(H2O)2 structures are briefly discussed. Above 570°C, MgAl2F8(H2O)2 decomposes under elimination of water into α-AlF3, β-AlF3, and MgF2.  相似文献   

7.
The electronic and geometric structures and the energetic characteristics of a series of monomeric MC34H32N4O 4 0,+ and dimeric (MC34H32N4O4) 2 0,+ molecules, heme analogues and their positively charged ions with 3d-metal atoms M = Ti, V, Cr, and Mn, have been calculated by the density functional theory B3LYP method with the Gen−1 = 6−31G*(Fe) + 6−31G(C, H, N, O) and Gen−2 = 6−311+G*(Fe) + 6−31G*(C, H, N, O) basis sets. The computation results are compared with the analogous calculated data on the heme dimers (heme) 2 0,+ . Computations show that for the (MC34H32N4O4) 2 0,+ dimers, high-spin states are preferable. In these dimers, the rings are linked with each other by a pair of M-carbonyl bridges M⋯Ob=C(OH) and a pair of hydrogen bridges OHb⋯N. The calculated energies of dissociation D of the dimers into monomers point to a rather high stability of the dimers at the beginning of the 3d series (D ∼ 2.3–3.6 eV for M = Ti, V), which decreases rapidly as the atomic number of M increases (D ∼ 0.5 eV for M = Cr and ∼0.4 eV for (heme)2). The positive ions (MC34H32N4O4) 2 + are ∼0.8–1.0 eV are more stable to dissociation than their neutral congeners (MC34H32N4O4)2. The trends in the behavior of the energetic and structural characteristics of the dimers (distances R(M—N), displacements of M atoms from the porphyrin ring plane, parameters of the carbonyl and hydrogen bridges, character of ring distortions, etc.), as well as in the spin density distribution between the metal atoms and the rings in the monomers MC34H32N4O4 and dimers (MC34H32N4O4)2 caused by their ionization and going along the 3d series, are examined. In the mixed dimer (FeC34H32N4O4)(VC34H32N4O4), the rings are linked by only one strong carbonyl bridge V⋯Ob=C(OH), with some contribution made by the neighboring hydrogen bridge. The dissociation energy of this mixed dimer into monomers is close to a half of the dissociation energy of the “symmetric” dimer (VC34H32N4O4)2. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, S.H. Lin, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 8, pp. 1332–1346.  相似文献   

8.
In an M-T-O model system (M is a polyvalent metal; T = Ge or Si), we consider initial stages of formation of cyclic MT clusters and the mechanism of their modification by T tetrahedra. The polyhedron ratio T/M in clusters increases progressively during modeling from one in M2T2 to two (M2T2 + 2T = M2T4), three (M2T2 + 2T2 = M2T6), and four (M2T2 + 2T + 2T2 = M2T8). These types of clusters were used to find precursor clusters for T-condensed structures of Na2Pr6Ge8O26, Na4Sc2Ge4O13, and Na5ScGe4O12. The TOPOS program package was used to carry out the complete 3D reconstruction of the self-assembly of Na,TR germanates: precursor cluster → primary chain → microlayer → microframework (supraprecursor) → ... framework. In all structures, as previously in six orthotetrahedral Na,TR germanate structures, the basic invariant type of four-polyhedral cyclic precursor cluster M2T2 was identified; this cluster is built of TR polyhedra, with CN = 6 or 7, linked via orthotetrahedra. The features of the generation of a Ge radical were considered in the form of a Ge2O7 chain and a Ge4O12 ring in various layers of the Na2Pr6Ge8O26 composite structure, a Ge4O13 chain in Na4Sc2Ge4O13, and a Ge12O36 ring in the Na5ScGe4O12 superionic conductor. Original Russian Text ? G.D. Ilyushin, L.N. Dem’yanets, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 484–496.  相似文献   

9.
Potassium erbium fluoride β-KEr2F7 crystallizes in the orthorhombic system, space group Pna21, with the unit-cell dimensions a = 11.820, b = 13.333, c = 7.816Å (Z = 8). The crystal structure has been solved from single-crystal diffractometer measurements (Ag) by Patterson and Fourier syntheses and refined by a least-squares method. The final R value is 0.042 for 2374 independent observed reflections (RW = 0.051). The four species of erbium atoms are surrounded by eight fluorine atoms. These fluorine atoms form, respectively, three quadratic antiprisms and one dodecahedron, derived from a distorted cube. Two antiprisms and the dodecahedron share two of their faces to form (Er3F17)8? groups. These groups are bidimensionally linked and the planes they form are joined together by the third antiprism. A three-dimensional network is then produced, in the tunnels of which potassium atoms are located. Lattice parameters of compounds which are isotypic to the new structure type of β-KEr2F7 are given.  相似文献   

10.
The thermal decomposition of the vapor phases of the oxygen bridged dimers Se2O2F8 and Te2O2F8 has been studied by mass spectrometry, electric deflection and flight time analysis on a molecular beam generated directly from the decomposition products. Se2O2F8 begins to decompose at ?250°C; the principal products are SeF4 and O2, with SeOF2 as a minor product. Decomposition is complete by ?500°C. There is some decomposition to monomeric SeOF4 between 200 and 350°C. Te2O2F8 did not begin to decompose until a temperature of 400°C was reached. Again, the principal products observed were TeF4, O2, and TeOF2 with no evidence for decomposition to the monomeric TeOF4.  相似文献   

11.
Nanopowder of a new tin(II) titanium(IV) oxide hydroxide fluoride, Sn1.24Ti1.94O3.66(OH)1.50F1.42 with the pyrochlore-type structure (cubic a = 10.3777(7) Å, space group Fd-3m) was prepared by using a microwave-assisted solvothermal reaction. The grain size of the nanopowder was 20–30 nm in diameter. Sn1.24Ti1.94O3.66(OH)1.50F1.42 decomposed above 300 °C, but could be sintered to relative density greater than 99% by a hydrothermal hot-pressing (HHP) method at 270 °C and 80 MPa for 4 h. The synthesized powder and solidified body obtained using HHP showed significantly different color, probably due to the difference in water content.  相似文献   

12.
The crystal structure of a double salt of sodium and cesium with 2-diphenylacetyl-1,3-indandione of the composition [Cs2Na(H2O)2(C23H16O3)(C23H15O3)3] (I) was studied by X-ray crystallography. The crystals of I are monoclinic, Z = 2, space group P21/n, a = 10.212(2) ?, b = 23.479(5) ?, c = 15.638(3) ?, β = 98.30(03)°. The compound contains [Cs2NaO10] trimers, in which the central Na atom shares two edges with two Cs atoms through deprotonated bridging ligands. The trimers are connected to adjacent trimers by paired C-H...O contacts to form layers. The layers form an infinite open framework via hydrogen bonds between the oxygen atoms of keto groups of noncoordinated indandione moieties and water molecules that enter the cesium coordination sphere in trimers of the adjacent layers.  相似文献   

13.
U3O8 oxide, as well as M2M3F11, MM2F7 and MM3F10 fluorides, with M = Rb, Tl, Cs, NH4 and M′ = In, Lu, Yb, Tm, is described as the regular repetition according to the … A-A-A … sequence of identical and parallel sheets of edge-and corner-sharing M′F7 or UO7 pentagonal bipyramids and M′F6 octahedra. M′ and U atoms are systematically located at the lattice points of a pseudohexagonal network, but in the fluorides some of these lattice points are vacant, producing hexagonal tunnels in which M atoms are located. It is shown that in the two kinds of compounds the same linear chains and M3X17 groups of pentagonal bipyramids are present, and that the transformation of the U3O8 structure into the fluorides can be achieved by an ordered substitution of some linear … UOUO … chains by … M-M-M … chains. All these structures can be described with the same structural model based on the chemical twinning principle.  相似文献   

14.
In the Sc2O3---Ga2O3---CuO, Sc2O3---Ga2O3---ZnO, and Sc2O3---Al2O3---CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3---A2O3---BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFe3+MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAlCuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations.  相似文献   

15.
Magnetic susceptibility of Ca2F2-xMnxO5 members crystallizing in two different structures, one having octahedral (O), tetrahedral (T) and square-pyramidal (SP) coordination of transition metal atoms (OTSP structure) and the other having octahedral and tetrahedral coordination (OT structure), has been investigated. Susceptibility behaviour of the oxides with OTSP structure is different from that of the oxides with OT structure. Ca2Fe1-33Mn0-67O5 with OTSP structure shows an antiferromagnetic ordering while the corresponding oxide with OT structure shows weak ferromagnetism. Contribution No. 398 from the Solid State and Structural Chemistry Unit  相似文献   

16.
Protonation equilibrium has been studied for the acyclic gold(III) tetraaza metallocomplex [AuB]2+ [B = N, N′-bis(2-aminoethyl)-2,4-pentanediiminato(1−)] in aqueous solution. The synthetic procedure is described. The crystal and molecular structure of the protonated form of the [AuHB](H5O2)(ClO4)4 complex has been determined. Monoclinic crystals with unit cell dimensions a = 11.964(2) Å, b = 13.789(3) Å, c = 15.496(3) Å, β = 109.00(3)°, V = 2417.1(8) Å3, Z = 4, ρcalc = 2.243 g/cm3, space group P21/n. The structure is built of nearly planar [Au(C9H20N4)]3+ complex cations, (H5O2)+ cations, and [ClO4] anions. The gold atom coordinates four nitrogen atoms of the ligand, forming a square plane. The six-membered chelate ring of the ligand is protonated at the central β-carbon atom and contains imine C=N bonds. The oxygen atoms of the perchlorate ions are hydrogen bonded to the (H5O2)+ dihydroxonium ion and to the nitrogen atoms of the NH2 groups of the [AuHB]3+ cation. Original Russian Text Copyright ? 2005 by V. A. Afanasieva, L. A. Glinskaya, R. F. Klevtsova, and I. V. Mironov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 909–915, September–October, 2005.  相似文献   

17.
The structural study of two (C30H48O2) pentacyclic triterpene (PCTT) isomers is presented. These terpenes, known as 30-hydroxy-lup-20(29)-en-3-one (1) and (11α)-11-hydroxy-lup-20(29)-en-3-one (2), were isolated from Maytenus imbricata Mart. Ex Reissek (Celastraceae). The molecular structure of 1 and 2 differs in the position of the hydroxyl group. Both compounds crystallize in non-centrosymmetric space groups with two molecules in the asymmetric unit. The crystal structure of 1 shows a triclinic P1 space group (a = 9.5518(1) ?, b = 9.7083(1) ?, c = 14.4696(2) ?, α = 93.832(1)°, β = 102.833(1)°, and γ = 103.307(1)°), while compound 2 crystallizes in a monoclinic P21 one (a = 13.4439(16) ?, b = 14.4463(14) ?, c = 13.5224(9) ? and β = 99.703(8)°). The two molecules independent by symmetry of 1 differ slightly due to the presence of static disorder in oxygen atoms. In addition, the intermolecular geometries of 1 and 2 were analysed, and in each isomer the crystal packing is stabilized by O-H…O intermolecular hydrogen bonds and van der Waals forces.  相似文献   

18.
The replacement of the PPh3 ligands in “three-bridge” exo-nido-ruthenacarborane 5,6,10-[RuCl(PPh3)2]-5,6,10-(μ-H)3-10-H-exo-nido-7,8-C2B9H8 with diphosphines, viz., 1,3-bis(diphenylphosphino)propane (dppp) or 1,4-bis(diphenylphosphino)butane (dppb) dramatically decreases the barrier to the thermal exo-nido→closo rearrangement affording the chelate closo-complexes 3,3-[Ph2P(CH2)nPPh2]-3-H-3-Cl-closo-3,1,2-RuC2B9H11 (n = 3 or 4) under mild conditions. In the reaction with dppp, the rearrangement is accompanied by the formation of 17-electron paramagnetic closo-ruthenacarborane 3,3-[Ph2P(CH2)3PPh2]-3-Cl-closo-3,1,2-RuC2B9H11, which could be isolated as the main product when the reaction was carried out at 80 °C. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2455–2459, November, 2005.  相似文献   

19.
This investigation presents the preparation of CeN0.222O0.667F1.333 by a solid-state reaction from a mixture of CeN:CeF3:CeO2 = 1:2:1.5 and its structural investigation. The samples were annealed at 900°C in platinum tubes for different times. The basic structure found by powder neutron diffraction is anion-excess fluorite-related. The unit cell is an orthorhombic distortion of the cubic fluorite cell and has the space group Abm2. The lattice constants are a = 577.71(2) pm, B = 572.76(5) pm, and c = 573.32(6) pm. The structure refined by Rietveld analysis shows that [1:0:2]- defect clusters are present. In samples prepared by longer annealing times an ordering of these clusters to larger aggregates, i.e., toward the vernier phases, was observed. This was deduced from full profile analysis without refining a structural model by comparing the instrumental resolution curves of several models.  相似文献   

20.
The results of quantum chemical calculations of the electronic structure and geometry of octahedral clusters [Mo6S8(CN)6]6−, [Mo6Se8(CN)6]6−, [Re6S8(CN)6]4−, and Rh6(CO)16 by the ab initio SCF (RHF) and DFT (B3LYP) methods with various basis sets are presented. The electronic states of the clusters under study in ideal spherically symmetric potential were classified in the orbital quantum number l (1s, 1p, 1d, 1f, 1g, 1h, 1i), l = 0–6. In real crystal field with Oh symmetry these states are split. The calculated new electronic states were matched to the irreducible representations of the point symmetry group Oh. The polarizabilities of the compounds considered are 55–65 Å3. A new model for the electronic structure of octahedral clusters containing M6 groups was proposed. The model is based on the idea of free electrons moving in spherically symmetric potential field. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2617–2624, December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号