首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The coordination preferences of the tetradentate Schiff base, N,N'-ethylenebis(acetylacetoimine), H(2)L, with a variety of group 13 precursors, led to the formation of a series of mono and binuclear products. The reaction of H(2)L with AlMe(3) and Me(2)GaCl afforded the binuclear complexes, [L{Al(Me)(2)}(2)] 1 and [H(2)L{GaCl(Me)(2)}(2)], 3, the latter an adduct of the neutral ligand. Treatment of 1 with iodine generated the cationic Al(III) complex, [LAl(thf)(2)]I, 2, while the addition of n-BuLi to H(2)L, followed by reaction with GaCl(3) and InCl(3) led to an ionic complex [{LGaCl}(2)(μLi)]GaCl(4), 4, an In(III) dimer, [LInCl](2), 5 and monomeric [LInCl(thf)], 6. In contrast, the reaction of [In{N(SiMe(3))(2)}(3)] with H(2)L yielded a homoleptic, air stable, indium complex, [L(3)In(2)], 7. All products were definitively characterized by X-ray crystallography and their structures confirmed by pertinent spectroscopic techniques.  相似文献   

2.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

3.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

4.
A series of heteroleptic beta-diketiminate-stabilised calcium amides of the form [{ArNC(Me)CHC(Me)NAr}Ca{NR(1)R(2)}(THF)] (Ar = 2,6-diisopropylphenyl; R(1) = H, R(2) = Ar; R(1) = H, R(2) = CH(2)CH(2)OMe; R(1) = R(2) = Ph) react with 1,3-dialkylcarbodiimides, R(3)N[double bond, length as m-dash]C[double bond, length as m-dash]NR(3) (R(3) = Cy, (i)Pr), to yield the corresponding insertion products [{ArNC(Me)CHC(Me)NAr}Ca{(R(3)N)(2)CNR(1)R(2)}(THF)] at room temperature in hydrocarbon solutions. These latter compounds contain both beta-diketiminate and guanidinate ligands bound to calcium. Solid-state data are consistent with the guanidinate ligands adopting a number of binding modes including kappa(2) through kappa(3) coordination, with varying degrees of delocalisation of the non-bound guanidinate nitrogen lone-pair across the pi-framework of the ligand. DFT computational studies have been conducted to address these variations in coordination behaviour.  相似文献   

5.
Reactions of lithium complexes of the bulky guanidinates [{(Dip)N}(2)CNR(2)](-) (Dip=C(6)H(3)iPr(2)-2,6; R=C(6)H(11) (Giso(-)) or iPr (Priso(-)), with NiBr(2) have afforded the nickel(II) complexes [{Ni(L)(μ-Br)}(2)] (L=Giso(-) or Priso(-)), the latter of which was crystallographically characterized. Reduction of [{Ni(Priso)(μ-Br)}(2)] with elemental potassium in benzene or toluene afforded the diamagnetic species [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me), which were shown, by X-ray crystallographic studies, to possess nonplanar bridging arene ligands that are partially reduced. A similar reduction of [{Ni(Priso)(μ-Br)}(2)] in cyclohexane yielded a mixture of the isomeric complexes [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)], both of which were structurally characterized. These complexes were also formed through arene elimination processes if [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me) were dissolved in hexane. In that solvent, diamagnetic [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] was found to slowly convert to paramagnetic [{Ni(μ-κ(2)-N,N'-Priso)}(2)], suggesting that the latter is the thermodynamic isomer. Computational analysis of a model of [{Ni(μ-κ(2)-N,N'-Priso)}(2)] showed it to have a Ni-Ni bond that has a multiconfigurational electronic structure. An analogous copper(I) complex [{Cu(μ-κ(2)-N,N'-Giso)}(2)] was prepared, structurally authenticated, and found, by a theoretical study, to have a negligible Cu···Cu bonding interaction. The reactivity of [{Ni(Priso)}(2)(μ-C(6)H(5)Me)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)] towards a range of small molecules was examined and this gave rise to diamagnetic complexes [{Ni(Priso)(μ-CO)}(2)] and [{Ni(Priso)(μ-N(3))}(2)]. Taken as a whole, this study highlights similarities between bulky guanidinate ligands and the β-diketiminate ligand class, but shows the former to have greater coordinative flexibility.  相似文献   

6.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

7.
The oligodentate P,N ligand N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene reacts with two equivalents of [{Rh(mu-Cl)(COD)}(2)], [NiBr(2)(DME)] or [PdCl(2)(NCMe)(2)](COD = 1,5-cyclooctadiene, DME = dimethoxyethane) in dichloromethane to give the tetranuclear complex [1,3-{cis-Rh(COD)(mu-Cl)(2)Rh(PPh(2))(2)N}(2)C(6)H(4)](1) or the dinuclear complexes [1,3-{cis-NiBr(2)(PPh(2))(2)N}(2)C(6)H(4)](2) and [1,3-{cis-PdCl(2)(PPh(2))(2)N}(2)C(6)H(4)](3), respectively. Compounds 1-3 were characterised by NMR ((1)H, (13)C, (31)P) and IR spectroscopy. The molecular structure of 2 and 3 shows the formation of a bis-chelate complex with M-P-N-P four-membered rings (M = Pd, Ni). An N,N,N',N'-tetrakis(diphenylphosphanyl)-1,3-diaminobenzene/Pd(OAc)(2) mixture was used for the copolymerisation of carbon monoxide with ethene or ethylidenenorbornene. Compound 1 was employed as catalyst in the hydrogenation of styrene.  相似文献   

8.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

9.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

10.
The acid-base reactions between the rare-earth metal (Ln) tris(ortho-N,N-dimethylaminobenzyl) complexes [Ln(CH2C(H4NMe2-o)3] with one equivalent of the silylene-linked cyclopentadiene-amine ligand (C5Me4H)SiMe2NH(C6H2Me3-2,4,6) afforded the corresponding half-sandwich aminobenzyl complexes [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Ln(CH2C6H4NMe2-o)(thf)] (2-Ln) (Ln=Y, La, Pr, Nd, Sm, Gd, Lu) in 60-87 % isolated yields. The one-pot reaction between ScCl(3) and [Me2Si(C5Me4)(NC6H2Me3-2,4,6)]Li2 followed by reaction with LiCH2C6H4NMe2-o in THF gave the scandium analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}Sc(CH2C6H4NMe2-o)] (2-Sc) in 67 % isolated yield. 2-Sc could not be prepared by the acid-base reaction between [Sc(CH2C6H4NMe2-o)3] and (C5Me4H)SiMe2NH(C6H2Me3-2,4,6). These half-sandwich rare-earth metal aminobenzyl complexes can serve as efficient catalyst precursors for the catalytic addition of various phosphine P--H bonds to carbodiimides to form a series of phosphaguanidine derivatives with excellent tolerability to aromatic carbon-halogen bonds. A significant increase in the catalytic activity was observed, as a result of an increase in the metal size with a general trend of La>Pr, Nd>Sm>Gd>Lu>Sc. The reaction of 2-La with 1 equiv of Ph2PH yielded the corresponding phosphide complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)(thf)2] (4), which, on recrystallization from benzene, gave the dimeric analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La(PPh2)]2 (5). Addition of 4 or 5 to iPrN=C=NiPr in THF yielded the phosphaguanidinate complex [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(thf)] (6), which, on recrystallization from ether, afforded the ether-coordinated structurally characterizable analogue [{Me2Si(C5Me4)(NC6H2Me3-2,4,6)}La{iPrNC(PPh2)NiPr}(OEt2)] (7). The reaction of 6 or 7 with Ph2PH in THF yielded 4 and the phosphaguanidine iPrN=C(PPh2)NHiPr (3a). These results suggest that the catalytic formation of a phosphaguanidine compound proceeds through the nucleophilic addition of a phosphide species, which is formed by the acid-base reaction between a rare-earth metal o-dimethylaminobenzyl bond and a phosphine P--H bond, to a carbodiimide, followed by the protonolysis of the resultant phosphaguanidinate species by a phosphine P--H bond. Almost all of the rare earth complexes reported this paper were structurally characterized by X-ray diffraction studies.  相似文献   

11.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

12.
The potential of the heteroleptic heavier alkaline-earth hexamethyldisilazides [{HC(C(Me)2N-2,6-iPr2C6H3)2}Ae{N(SiMe3)2}(THF)](Ae = Ca, Sr, Ba) as kinetically-stable reagents for further protolytic reaction chemistry has been assessed. Only the previously reported calcium complex was found to be stable to solution dismutation and dynamic ligand exchange. The barium complex was isolated in sufficient purity to enable characterisation by an X-ray analysis. Reactions of the kinetically robust calcium complex with cyclohexylamine and tert-butylamine resulted in displacement of THF and formation of solvated structures, which could be characterised by 1H NMR spectroscopy. Attempts to isolate these solvated complexes were unsuccessful due to redistribution to the homoleptic complex [{HC(C(Me)2N-2,6-iPr2C6H3)2}2Ca]. In contrast, the more acidic amine [H2NCH2CH2OMe] was cleanly deprotonated resulting in the isolation of the first well defined primary amido derivative of a heavier alkaline-earth element, [{HC(C(Me)2N-2,6-iPr2C6H3)2}Ca{NHCH2CH2OMe}]2, which retains its dimeric constitution in solution and is stable to further intermolecular ligand exchange. Reactions of [{HC(C(Me)2N-2,6-iPr2C6H3)2}Ca{N(SiMe3)2}(THF)] with a variety of ortho-disubstituted anilines also resulted in immediate protonation of the hexamethyldisilazide ligand. Only the most sterically demanding 2,6-diisopropylphenyl anilide derivative possessed sufficient kinetic stability to allow isolation of the heteroleptic complex. The crystal structure of [{HC(C(Me)2N-2,6-iPr2C6H3)2}Ca{N(H)-2,6-iPrC6H3}(THF)] was shown to exist as a mononuclear, pseudo-five-coordinate complex in which the coordinative unsaturation of the calcium centre is relieved by a Ca...H-C agostic-type interaction to one of the ortho isopropyl groups of the anilide ligand. This interaction is not maintained in solution however and the complex slowly redistributes to the homoleptic beta-diketiminato species and ill-defined polymeric calcium anilido products.  相似文献   

13.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

14.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

15.
Reactions of the bulky amidinate and guanidinate salts K[(ArN)(2)CR] (R = Bu(t), NPr(i)(2) or N(C(6)H(11))(2); Ar = 2,6-diisopropylphenyl) with [{RhCl(eta(4)-COD)}(2)] (COD = 1,5-cyclooctadiene) lead to KCl elimination and the formation of the complexes, [Rh{(eta(5)-ArN)(ArN)CR}(COD)], in which the anionic ligand coordinates the rhodium centre in an unprecedented eta(5)-cyclohexadienyl mode. The thermal conversions of these complexes to their N,N'-chelated isomers, [Rh{kappa(2)-N,N'-(ArN)(2)CR}(COD)], were carried out and the kinetics of these processes have been shown to be first order. The rates of the isomerisations are inversely proportional to the size of the amidinate or guanidinate backbone substituent. Analogies between the ligating properties of the bulky amidinates and guanidinates used in the study, and those of beta-diketiminates are discussed.  相似文献   

16.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

17.
The factors governing the stability and the reactivity towards cyclic esters of heteroleptic complexes of the large alkaline earth metals (Ae) have been probed. The synthesis and stability of a family of heteroleptic silylamido and alkoxide complexes of calcium [{LO(i)}Ca-Nu(thf)(n)] supported by mono-anionic amino ether phenolate ligands (i = 1, {LO(1)}(-) = 4-(tert-butyl)-2,6-bis(morpholinomethyl)phenolate, Nu(-) = N(SiMe(2)H)(2)(-), n = 0, 4; i = 2, {LO(2)}(-) = 2,4-di-tert-butyl-6-{[2-(methoxymethyl)pyrrolidin-1-yl]methyl}phenolate, Nu(-) = N(SiMe(2)H)(2)(-), n = 0, 5; i = 4, {LO(4)}(-) = 2-{[bis(2-methoxyethyl)amino]methyl}-4,6-di-tert-butylphenolate, Nu(-) = N(SiMe(2)H)(2)(-), n = 1, 6; Nu(-) = HC≡CCH(2)O(-), n = 0, 7) and those of the related [{LO(3)}Ae-N(SiMe(2)H)(2)] ({LO(3)}(-) = 2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenolate Ae = Ca, 1; Sr, 2; Ba, 3) have been investigated. The molecular structures of 1, 2, [(4)(2)], 6, and [(7)(2)] have been determined by X-ray diffraction. These highlight Ae???H-Si internal β-agostic interactions, which play a key role in the stabilization of [{LO(i)}Ae-N(SiMe(2)H)(2)] complexes against ligand redistribution reactions, in contrast to regular [{LO(i)}Ae-N(SiMe(3))(2)]. Pulse-gradient spin-echo (PGSE) NMR measurements showed that 1, 4, 6, and 7 are monomeric in solution. Complexes 1-7 mediate the ring-opening polymerization (ROP) of L-lactide highly efficiently, converting up to 5000?equivalents of monomer at 25?°C in a controlled fashion. In the immortal ROP performed with up to 100?equivalents of exogenous 9-anthracenylmethanol or benzyl or propargyl alcohols as a transfer agent, the activity of the catalyst increased with the size of the metal (1<2<3). For Ca-based complexes, the enhanced electron-donating ability of the ancillary ligand favored catalyst activity (1>6>4≈5). The nature of the alcohol had little effect over the activity of the binary catalyst system 1/ROH; in all cases, both the control and end-group fidelity were excellent. In the living ROP of L-LA, the HC≡CCH(2)O(-) initiating group (as in 7) proved superior to N(SiMe(2)H)(2)(-) or N(SiMe(3))(2)(-) (as in 6 or [{LO(4)}Ca-N(SiMe(3))(2)] (B), respectively).  相似文献   

18.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

19.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

20.
Complexes [Pd{C,N-Ar{C(Me)=NOH}-2}(μ-Cl)](2) (1) with Ar = C(6)H(4), C(6)H(3)NO(2)-5 or C(6)H(OMe)(3)-4,5,6, were obtained from the appropriate oxime, Li(2)[PdCl(4)] and NaOAc. They reacted with neutral monodentate C-, P- or N-donor ligands (L), with [PPN]Cl ([PPN] = Ph(3)P=N=PPh(3)), with Tl(acac) (acacH = acetylacetone), or with neutral bidentate ligands N^N (tetramethylethylenediamine (tmeda), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bubpy)) in the presence of AgOTf or AgClO(4) to afford complexes of the types [Pd{C,N-Ar{C(Me)=NOH}-2}Cl(L)] (2), [PPN][Pd{C,N-Ar{C(Me)=NOH}-2}Cl(2)] (3), [Pd{C,N-Ar{C(Me)=NOH}-2}(acac)] (4) or [Pd{C,N-Ar{C(Me)=NOH}-2}(N^N)]X (X = OTf, ClO(4)) (5), respectively. Complexes 1 reacted with bidentate N^N ligands in the presence of a base to afford mononuclear zwitterionic oximato complexes [Pd{C,N-Ar{C(Me)=NO}-2}(N^N)] (6). Dehydrochlorination of complexes 2 by a base yielded dimeric oximato complexes of the type [Pd{μ-C,N,O-Ar{C(Me)[double bond, length as m-dash]NO}-2}L](2) (7). The insertion of XyNC into the Pd-C(aryl) bond of complex 2 produced the mononuclear iminoaryloxime derivative [Pd{C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl(CNXy)] (8) which, in turn, reacted with [AuCl(SMe(2))] to give [Pd{μ-N,C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl](2) (9) with loss of XyNC. Some of these complexes are, for any metal, the first containing cyclometalated aryloximato (6, 7) or iminoaryloxime (8, 9) ligands. Various crystal structures of complexes of the types 2, 3, 6, 7, 8 and 9 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号