首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light‐dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source.  相似文献   

2.
The modeling of the semibatch emulsion polymerization of styrene and its validation against data obtained from a reactor facility is presented. The model, which describes the growth of a monodisperse polystyrene seed as neat monomer is fed to the reactor, incorporates recent findings in radical diffusion and kinetics. The current controversy surrounding radical absorption into particles is handled by considering absorption via propagation, diffusion, and collision in the model. Simulation results including weight fraction polymer inside the particles and particle diameter are compared to data obtained from a custom-designed and built automated reactor control facility capable of on-line density and on-line particle diameter measurements. Good agreement between simulation results and experimental data are obtained for any of the three absorption mechanisms considered by varying only one adjustable parameter located in the absorption rate coefficient relation. A sensitivity analysis of the model to this adjustable parameter, using the program ODESSA, is also presented and shown to be an important tool in the validation procedure. Lastly, an analysis of the dynamics of the process shows the variety of phenomena that can be obtained in a semibatch reactor including regions that exhibit pseudosteady states, autoacceleration of the rate, and limiting conversion. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1553–1571, 1998  相似文献   

3.
1引言呋喃分子在450nm附近的多光子电离实验中[1],质谱中观察不到母体离子C4H4O+,主要碎片离子的相对丰度C+>C2+=CHO+=C3H3+.这些离子的选质量光谱研究表明它们是呋喃分子先吸收3+1个光子电离为母体离子C4H4O+,然后C4H4O+再进一步吸收光子逐步解离产生.陕哺离子的初级解离过程已比较清楚[2-4],吹响离子能量在1~5eV之间解离通道是:这三个平行解离反应可用RRKM理论来描述[4].但是陕哺离子在高能量下的解离反应,特别是次级解离过程还不清楚,因此无法确定MPIF实验中观察到小离子碎片产生的机理,为此本文在速…  相似文献   

4.
The multiphoton ionization and fragmentation pathway of furan at 450nm is analyzed on the basis of statistical theory and Ladder-Switching model. Our calculation indicates that fragmentation takes plase after furan molecules absorb six photons of 450nm, C+ begins to appear after absorption of nine photons, production of C2+ ions needs absorption of at least 15 photons. Our interesting result is that C+ ions is produced by dissociation of C3H+, CH2+ and C3+ ions, not of C2+ ions. Theoretically computed relative abundance of C+/C2+ after absorption 15photons agrees well with our experimental results.  相似文献   

5.
A new approach for studying the particle dynamics and RTD (residence time distribution) in processes is to formulate stochastic models. A common question to all models for RTD is whether Danckwerts’ law for mean residence time holds. In this paper we revisit a Markov process that has been proposed by Dehling et al. (1999) as a stochastic model for particle transport in fluidized bed reactors. Under the volumetric flow balance conditions, we deduce different boundary conditions at the entrance and the exit of the reactor, and in both discrete model and continuous model we show that processes satisfy Danckwerts’ law, stating that the mean residence time of particle transport in fluidized bed reactors equals V/v, where V denotes the volume of the reactor occupied by the fluid and v the volumetric inflow rate.  相似文献   

6.
韩江华 《色谱》2019,37(4):444-448
己内酰胺(CPL)是重要的化工原料,CPL中即使存在微量的杂质都会对聚合产物的性能产生一定的影响,因此对聚合级CPL的纯度有很高的要求。该文对光密度值严重超标的组合工艺工业试验产品采用气相色谱-火焰离子化检测技术(GC/FID)、气相色谱-质谱(GC-MS)等手段进行了定性分析,确定该杂质的相对分子质量为188,分子式为C12H16N2,环加双键数为6,为八氢吩嗪。结合组合工艺生产CPL所涉及化学反应的特点对八氢吩嗪的来源进行了理论推测,认为该杂质来源于Beckmann重排反应的副反应Neber重排,结构中含有较强的生色基团,对产品的光密度指标影响严重。因此,CPL生产过程中必须对八氢吩嗪的产生过程和生成浓度严格控制。  相似文献   

7.
6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes.  相似文献   

8.
The nonlinear optical and time-resolved properties of a series of phenylazomethine-porphyrin dendrimers are reported. The linear optical properties were also investigated, and the efficiency of the energy transfer process was obtained. Measurements were also carried out with the basic building-block molecules. The process of frequency up-converted emission was observed in these porphyrin dendrimers. The mechanism for this effect is investigated and related to the process of "hot-band" absorption in the phenylazomethine-porphyrin system. Time-resolved measurements also suggested efficient intramolecular vibrational energy redistribution in these systems. These properties suggest that the porphyrin dendrimers may also have applications in light harvesting of low-frequency photons, as well as in sensors.  相似文献   

9.
The nonadiabatic photodissociation dynamics of CH2BrCl into CH2Br + Cl or CH2Cl + Br is studied using two-dimensional wavepacket propagations on ab initio multiconfigurational MS-CASPT2 potential energy surfaces. Using a three-state diabatic model, we investigate the electronic states responsible for the two competing fragmentation channels and how the conical intersection present between the two lowest excited states affects the dissociation rate. Within this model, we find that the Br/Cl branching ratio depends on the irradiation wavelength. Predominant C-Br fragmentation occurs for wavelengths longer than 200 nm, while nonadiabatic C-Cl dissociation with a constant branching ratio of 0.4 is predicted upon absorption of photons in the range of 170-180 nm. Additionally, we observe complete nonadiabatic population transfer in less than 100 fs, that is, before the wavepacket can reach the conical intersection. As a consequence, there is no three-body CH2 + Br + Cl dissociation.  相似文献   

10.
Cell culture chip using low-shear mass transport   总被引:1,自引:0,他引:1  
We have developed a flow cell that allows culturing adherent cells as well as suspended cells in a stable, homogeneous, and low-shear force environment. The device features continuous medium supply and waste exchange. In this paper, a simple and fast protocol for device design, fabrication, and assembly (sealing) based on a poly(dimethylsiloxane) (PMDS)/glass slide hybrid structure is described. The cell culture system performance was monitored, and the effective shear force inside the culture well was also determined. By manipulating the device dimensions and volumetric flow rate, shear stress was controlled during experiments. Cell adhesion, growth, proliferation, and death over long-term culture periods were observed by microscopy. The growth of both endothelial and suspension cells in this device exhibited comparable characteristics to those of traditional approaches. The low-shear culture device significantly reduced shear stress encountered in microfluidic systems, allowing both adherent and suspended cells to be grown in a simple device.  相似文献   

11.
The coherent detection imaging (CDI) method uses the optical heterodyne detection technique. CW and single frequency lasers having long coherence lengths are used to exploit the maximum advantages of heterodyne detection, such as high directionality, selectivity and sensitivity. The CDI method based on optical heterodyne detection enables selective filtering of the directional coherence-retaining emergent photons, which leads to image reconstruction from projections, similar to X-ray computed tomography (CT). So far we have demonstrated the advantages and capabilities of the measurement technique for transillumination optical computed tomography in biomedicine. Here, we investigate the fundamental imaging properties of CDI method, such as its high directionality and quantitativeness, with preliminary physical phantom experiments. The results show that the CDI method satisfies the requirements for CT reconstruction under the first order approximation, and enables quantitative measurements in the sense that the relationship between estimated and actual concentration retains a satisfactory linearity.  相似文献   

12.
The formation of reverse micelles (RMs) of sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) in n-heptane including two different beta-cyclodextrin (beta-CD) derivatives (hydroxypropyl-beta-CD, hp-beta-CD, and decenyl succinyl-beta-CD, Mod-beta-CD) is reported. Both cyclodextrins can be incorporated into AOT RMs in different zones within the aggregate, while beta-CD cannot. Using UV-vis and induced circular dichroism (ICD) spectroscopy and different achiral molecular probes (some azo dyes, p-nitroaniline and ferrocene), it was possible to determine that Mod-beta-CD is located with its cavity at the oil side of the AOT RM interface, while for hp-beta-CD the cavity is inside the RM water pool. Among the molecular probes used, methyl orange (MO) was the only one which gave the ICD signal when dissolved in the AOT RMs with hp-beta-CD, so a detailed study of MO behavior in homogeneous media was also performed to compare with the microheterogeneous media. The solvatochromic behavior of the dye depends not only on the polarity of the media but also on other specific solvent properties. A Kamlet-Taft analysis shows that the MO absorption spectrum shifts to longer wavelength with an increase in the solvent polarity-polarizability (pi*) and the hydrogen donor ability (alpha) of the medium. MO appears to be almost 3 times more sensitive to the pi* parameter than to the alpha parameter. In addition, from the MO absorption spectral changes with the hp-beta-CD concentration, the association equilibrium constants in pure water (K11W) and inside the RMs (K11RM) were computed. The results show that K11W is almost 10 times larger than the value inside the RMs. The latter can be explained considering that MO resides anchored to the RM interface through hydrogen bond interaction with the hydration bound water. This study shows for the first time that the cyclodextrin chiral cavity is available for a guest in an organic medium such as the RMs; therefore, we have created a potentially powerful nanoreactor with two different confined regions in the same aggregate: the polar core of the RMs and the chiral hydrophobic cavity of cyclodextrin.  相似文献   

13.
Relativistic quantum-field theory provides the machinery for calculating wave functions or probability amplitudes depending upon space-time coordinates. The currently accepted theory, however, fails to provide position operators and a means of measuring particle coordinates that are consistent with Dirac's properties of physical observables. This is because it calls for a space position probability distribution at a specified time. This paper shows, however, that space-time event coordinate operators, together with a corresponding measurement procedure, can be found that are consistent with Dirac's requirements. This is done through a reinterpretation of the amplitudes computed by field theory and does not involve any change in that mathematical formalism. The measurement of the space-time coordinates of an event is accomplished by detecting the absorption of a photon by a particle from each of two light pulses designed to overlap at a given point at a given time. If a final emitted photon has an energy whose sum with the final particle energy approximately equals the sum of the mean energies of the pulses, then the absorption of the two pulse photons must certainly have taken place within a distance the order of a Compton wavelength of the small space-time region of overlapping pulses. This is clear from the fact that the high energy required to confine the pulses to very small volumes must throw a particle absorbing them far off the mass shell. Thus the absorption of the two photons throws the particle into a narrowly confined spatial wave function that must decay extremely rapidly—to within a Compton wavelength, a delta function in space-time. This delta function is the eigenfunction of space-time coordinate operators Xμ and is the scalar product of vectors in a Hilbert space spanned by spin–space-time kets large enough to contain the operators of the Poincaré group. These event operators transform properly under the action of Poincaré operators but do not commute with the mass. If the Compton wavelength is not negligible compared to the accuracy desired in the coordinate measurements, individual coordinate measurements are no longer possible. Nevertheless, a large number of repeated coordinate measurements can be carried out to produce a coordinate probability distribution. This distribution can be unfolded to find a true coordinate probability distribution if the charge form factor is known from basic theory. An analysis of laboratory particle detection techniques shows that they actually determine space coordinates and energy rather than spatial coordinates at a given time. When this fact is included, the Klein–Nishina formula can be derived using the electromagnetic four-vector potential as the photon probability amplitude wave. To clarify the meaning of the observables, a mass-momentum measurement is described.  相似文献   

14.
We have investigated the simultaneous absorption of near-infrared photons by pairs of neighboring molecules in liquid methanol. Simultaneous absorption by two OH-stretching modes is found to occur at an energy higher than the sum of the two absorbing modes. This frequency shift arises from interaction between the modes, and its value has been used to determine the average coupling between neighboring methanol molecules. We find a rms coupling strength of 46+/-1 cm(-1), larger than can be explained from a transition-dipole coupling mechanism, suggesting that hydrogen-bond mediated interactions also contribute to the coupling. The most important aspect of simultaneous vibrational absorption is that it allows for a quantitative investigation of hydrogen-bond cooperativity. We derive the extent to which the hydrogen-bond strengths of neighboring molecules are correlated by comparing the line shape of the absorption band caused by simultaneous absorption with that of the fundamental transition. Surprisingly, neighboring hydrogen bonds in methanol are found to be strongly correlated, and from the data we obtain an estimate for the hydrogen-bond correlation coefficient of 0.69+/-0.12.  相似文献   

15.
The partial oxidation of methane to C2 hydrocarbons was investigated experimentally in a dielectric-barrier discharge (DBD) reactor. The effects of reactor wall temperature, input gas flow rate and volumetric ratio of methane to oxygen over methane conversion and C2 production were investigated. The highest C2 selectivity of about 50% was achieved at 1.8% methane conversion. Finally the model equations were used to correlate methane conversion and ethylene selectivity with the system variable within the studied range of them. The correlation equation shows the sole effects and interaction effects of system variables on methane conversion and ethylene selectivity.  相似文献   

16.
The paper reports the occurrence of multiple steady-state zones in most of the constructions of fixed-bed photocatalytic reactors. Such a phenomenon has not been ever observed in a field of photocatalytic reactors. The simulation has been provided for a common case in a photocatalysis—the degradation of colored compounds. The mathematical model of the photocatalytic reactor with immobilized bed has been stated by a simple ideal mixing model (analogous to the CSTR model). The solution has been continued by the two parameters—the Damköhler number and the absorption coefficient related to the inlet stream concentration. Some branches of steady states include the limit point. The performed two-parametric continuation of the limit point showed the cusp bifurcation point. Besides the numerical simulation, the physical explanation of the observed phenomenon has been provided; the multiple steady-states occurrence is controlled by light absorption–reaction rate junction. When the reaction rate is limited by the light absorption, we can say that a light barrier occurs. The dynamical simulations show that when the process is operated in a field of multiple steady states, the overall reactor efficiency is related to the reactor set-up mode.  相似文献   

17.
贾若琨  杨珊  李翠霞  闫永楠  白玉白 《化学学报》2008,66(21):2439-2444
采用丙三醇液相结晶法制备了NaYF4∶Er3+, Yb3+上转换纳米晶, 合成步骤被简化. 常温下, 用980 nm的红外激光激发可以观察到很强的绿光、红光发射, 用荧光光谱仪记录了该上转换光谱. X射线粉末衍射(XRD)结果表明, 该方法制备NaYF4∶Er3+, Yb3+纳米晶属于立方混合六方晶系. 研究了纳米晶的上转换发光机理, 根据晶体场理论对Er3+的两个上转换能级进行了Stark分裂计算, 对两个能级之间的谱线进行了归属, 进一步证实了980 nm光子激发Er3+离子的上转换机理, 一个是连续吸收两个980 nm光子的过程(激发态吸收), 另一个是吸收980 nm光子后, 电子转移到亚稳态能级, 然后再吸收980 nm光子过程(能量转移上转换).  相似文献   

18.
The experimental evidence for the growth‐promoting mechanism and the efficiency of energy transfer (EET) of LH4 under low light are still not available. To elucidate the light adaption mechanism of LH4, we deleted the genes pucBAd involved in the synthesis of the α/β polypeptides of LH4 in Rhodopseudomonas palustris CGA009. Compared to wild strain, the growth rate of pucBAd mutant significantly decreased under low light, while there were no significant changes in the growth rate, the contents and compositions of photopigments, absorption spectra of cell lysates under high light. Moreover, the fluorescence quantum efficiency (FQE) was used to further compare the EET between LH2 and LH4. The FQE in LH4 increased up to 1.5‐fold than did in LH2. Collectively, this study showed that LH4 could provide more and high energetic state photons for promoting bacterial phototrophic growth in response to low‐light environment.  相似文献   

19.
Homogeneous and heterogeneous nucleations were simulated by molecular dynamics (MD). The behavior of Lennard-Jones molecules was studied inside a liquid-gas system where all dimensions of the wall were periodic and a soft core carrier gas within the system controlled the temperature. In this study, the classical nucleation theory was found to underestimate the homogeneous nucleation rate by five orders of magnitude, which complies with other MD studies. The discrepancy in the nucleation rate between theory and simulation was mainly caused by the fundamental assumption that there are no volumetric interactions in the growth process. In this particular case, however, growth was observed at multiple sites due to Ostwald ripening and coalescence between nuclei by Brownian motion. Furthermore, even though the supersaturation ratio is inadequate for homogeneous nucleation, once a seed is introduced to the system, a cluster can be created. The addition of seeds not only enhances nucleation but also renders coalescence as an important nucleation mechanism in the earlier stages compared to homogeneous nucleation.  相似文献   

20.
While many parallel synthesis methods developed by the pharmaceutical and life science communities are being applied to polymer synthesis, there remains a need to construct "libraries" of polymeric materials that explore a wider range of polymer structures with accuracy, flexibility, and rapid, often small, changes. We report the use of microfluidics to create an environment for continuous controlled radical polymerization. Varying either the flow rate or the relative concentrations of reactants (i.e., stoichiometry) controls the molecular properties of the products. Molecular variables, here molecular weight, can then be varied continuously. Well-defined materials with narrow molecular weight distributions are produced inside the microfluidic reactor and are available for processing, such as further mixing, deposition, or coating on surfaces. Preliminary kinetic data appear to agree well with literature values reported for larger-scale reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号