首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

2.
An on-line separation, preconcentration and determination system for vanadium(IV) and vanadium(V) comprising inductively coupled plasma optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) method with an ultrasonic nebulization (USN) system was studied. The vanadium species were retained on an Amberlite XAD-7 resin as a vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (V-5-Br-PADAP) complex at pH 3.7. Enhanced selectivity was obtained with the combined use of the formation on-line of the complexes and 1,2-cyclohexanediaminetetraacetic acid (CDTA) as masking agent. The vanadium complexes were removed from the microcolumn with 25% v/v nitric acid. A sensitivity enhancement factor of 225 was obtained with respect to ICP-OES using pneumatic nebulization (15-fold for USN and 15-fold for the microcolumn). The detection limit for the preconcentration of 10 mL of aqueous solution was 19 ng L-1. The precision for 10 replicate determinations at the 5 micrograms L-1 V level was 2.3% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the separation and preconcentration system for vanadium species was linear with a correlation coefficient of 0.9992 at levels from near the detection limits up to at least 100 micrograms L-1. The method was successfully applied to the speciation of vanadium in river water samples.  相似文献   

3.
Carasek E 《Talanta》2000,51(1):173-178
A simple and fast method for the extraction into xylene of sub mug l(-1) concentrations of metals using ammonium diethyldithiophosphate (DDTP) as a complexing reagent and their subsequent determination by flame atomic absorption spectrometry is described. The method was tested in sea water spiked with Au at a concentration of 3.0 mug l(-1). The extraction was carried out until the aqueous to organic phase ratio achieved a 1000-fold preconcentration of metal. Optimisation of extraction parameters and the effect of Fe interference was investigated. Sea water samples spiked with Au produced an average recovery of 95% and the detection limit (3sigma) in deionized water was 2.9 ng l(-1). High enrichment factors could be obtained due to the small final volume (mul) of organic solvent.  相似文献   

4.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

5.
A preconcentration and determination method for humic and fulvic acids at trace levels in natural water samples was developed. Cloud point extraction was successfully employed for the preconcentration of humic acid (HA) and fulvic acid (FA) prior to the determination by using a flow injection (FI) system coupled to a spectrophotometric UV-Vis detector. The quantitative extraction of HA and FA within the pH range 1-12 was obtained by neutralization of the anionic charge on the humic substances with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB). This generated a hydrophobic species that was subsequently incorporated (solubilized) into the micelles of a non-ionic surfactant polyethylene glycol, tert-octylphenyl ether (Triton X-114). The FI method for HA and FA determination was developed by injection of 100 microl of the extracted surfactant-rich phase using an HPLC pump with spectrophotometric detection at 350 nm. A 50 ml sample solution preconcentration allowed an enrichment factor of 167. The limit of detection (LOD) obtained under the optimal conditions was 5 microg l(-1). The precision for ten replicate determinations at 0.2 mg l(-1) HA was 3.1% relative standard deviation (RSD), calculated from the peak heights. The calibration using the preconcentration system for HA and FA was linear with a correlation coefficient (r2) of 0.9997 at levels near the detection limits up to at least 1 mg l(-1). The method was successfully applied to the determination of HA and FA in natural water samples (river water).  相似文献   

6.
Luo Y  Nakano S  Holman DA  Ruzicka J  Christian GD 《Talanta》1997,44(9):1563-1571
The spectrophotometric determination of Cr(VI) and Cr(III) via sequential injection was used to demonstrate the sensitivity enhancement provided by a newly developed wetting film extraction system. The reaction product of Cr(VI) with 1,5-diphenylcarbazide was ion-paired with perchlorate and extracted into an organic wetting film consisting of octanol and 4-methyl-2-pentanone on the inner wall of a Teflon tube. The wetting film, with the extracted analyte, was then eluted with 100 mul acetonitrile and the analyte determined spectrophotometrically at 546 nm. Important optimized parameters were the selection of wetting film and elution solvents, the flow rate, the length and diameter of the extraction coil and the conditions for the formation of the ion paired chelate. Cr(III) was previously oxidized to Cr(VI) and calculated as the difference between total Cr and Cr(VI). An enrichment factor of 25 and a detection limit of 2.0 mug l(-1) Cr(VI) were achieved with a sampling frequency of 17 h(-1). The calibration curve was linear up to 100 mug l(-1) Cr(VI) (r = 0.999). The relative standard deviations were 2.8 and 2.0% at the 25 and 100 mug l(-1) levels.  相似文献   

7.
An on-line cadmium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) with ultrasonic nebulization system (USN) was studied. The cadmium was retained as the cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, Cd-(5-Br-PADAP), complex, at pH 9.5. The cadmium complex was removed from the knotted reactor (KR) with 3.0 mol/L nitric acid. A total enhancement factor of 216 was obtained with respect to ICP-OES using pneumatic nebulization (12 for USN and 18 for KR) with a preconcentration time of 60 s. The value of the detection limit for the preconcentration of 5 mL of sample solution was 5 ng/L. The precision for 10 replicate determinations at the 5 microg/L Cd level was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for cadmium was linear with a correlation coefficient of 0.9998 at levels near the detection limits up to at least 1,000 microg/L. The method was successfully applied to the determination of cadmium in wine samples.  相似文献   

8.
In the present study a simple versatile separation method using cloud point procedure for extraction of trace levels of zirconium and hafnium is proposed. The extraction of analytes from aqueous samples was performed in the presence of quinalizarine as chelating agent and Triton X-114 as a non-ionic surfactant. After phase separation, the surfactant-rich phase was diluted with 30% (v/v) propanol solution containing 1 mol l(-1) HNO3. Then, the enriched analytes in the surfactant-rich phase were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 3.4 x 10(-5) mol l(-1) quinalizarine, 0.1% (w/v) Triton X-114, 55 degrees C equilibrium temperature) the calibration graphs were linear in the range of 0.5-1000 mug l(-1) with detection limits (DLs) of 0.26 and 0.31 microg l(-1) for Zr and Hf, respectively. Under the presence of foreign ions no significant interference was observed. The precision (%RSD) for 8 replicate determinations at 200 microg l(-1) of Zr and Hf was better than 2.9% and the enrichment factors were obtained as 38.9 and 35.8 for Zr and Hf, respectively. Finally, the proposed method was successfully utilized for the determination of these cations in water and alloy samples.  相似文献   

9.
Kokšal J  Synek V  Janoš P 《Talanta》2002,58(2):325-330
Trace amounts of lead were determined in high purity aluminium salts (especially in ammonium aluminium sulfate) using inductively coupled plasma-optical emission spectrometry (ICP-OES) after extractive pre-concentration and matrix separation. Metals were extracted from the aluminium matrix in the form of chelates with ammonium pyrolidine dithoocarbamate into methyl isobutyketone. The organic extract was digested with nitric acid and hydrogen peroxide. The limit of detection for the determination of lead in crystalline ammonium aluminium sulfate was ca. 0.044 mug g(-1). The relative expanded uncertainty of the lead determination was ca. 23% at the level of 0.2 mug g(-1) and ca. 16% at the level of 1.0 mug g(-1). The main uncertainty contribution was associated with repeatability of the whole analytical procedure.  相似文献   

10.
A general rapid on-line preconcentration method for the determination of trace metals coupled to flame atomic absorption spectrophotometry (FAAS) or ion chromatography (IC) with spectrophotometric detection is described. The method is based on the on-line precipitation of metal hydroxides with sodium hydroxide and their dissolution in a small volume of nitric acid solution. All the chemical and physical variables that affect the efficiency of metal precipitation and elution in the flow injection system have been studied. The detection limits obtained by FAAS are 0.1, 0.3, 0.5 and 0.5 mug l(-1) for Zn, Cu, Ni and Pb, respectively. When the on-line precipitation is coupled to IC with post-column derivatization with the spectrophotometric reagent 4-(2-pyridylazo) resorcinol (PAR), the detection limits are 3, 1, 5, 3, and 3 mug l(-1) for Cu, Zn, Ni, Co and Mn, respectively. The proposed general method was successfully applied to determine independently the above mentioned metals in compost and tap and river water samples.  相似文献   

11.
A new flow injection on-line adsorption preconcentration system adapted to flame atomic absorption spectrometry (FAAS) for copper determination at the mug l(-1) level was developed. Polytetrafluoroethylene (PTFE) turnings packed in a mini-column were used as sorbent material. The copper ammonium pyrrolidine dithiocarbamate (APDC) complex was sorbed on the PTFE turnings, from which it could be eluted on-line instantly by isobutyl methyl ketone (IBMK) into the flame at a flow rate of 2.3 ml min(-1). The system was optimized and offered good performance characteristics with practically unlimited life time, greater flow rates and improved flexibility, as compared with other sorbent materials and the knotted reactor preconcentration systems. With 1 min preconcentration time, and a sample frequency of 40 h(-1), the enhancement factor was 340, which could be further improved by increasing the preconcentration time. The detection limit was c(L)=0.05 mug l(-1), and the precision was 1.5%, at the 2.0 mug l(-1) Cu level. The method has been applied successfully to the analysis of potable, river and seawater, and its accuracy was tested by the analysis of certified reference materials and by recovery measurements on spiked samples. No significant interferences exist from other substances usually occurring in natural water.  相似文献   

12.
Cloud point extraction (CPE) and solid phase extraction (SPE) methods were developed for the determination of ??g l?1 of vanadium ions in surface, tap and bottled mineral water samples, based on the rapid reaction of vanadium(V) with 8- hydroxyquinoline (8-quinolinol) at pH 3?C5. Both the sensitive extraction methods were successfully employed for the preconcentration of V in real samples. For CPE, V complexed with 8-quinolinol and then was entrapped in non-ionic surfactant Triton X-114, while for SPE, V was adsorbed on XAD -2 impregnated with 8-quinolinol. The experimental conditions for SPE (pH, eluent, and contact time between the liquid sample and the resin) and CPE (pH of sample solution, concentration of 8- quinolinol and Triton X-114, equilibration temperature and time period for shaking) were investigated in detail. The validity of SPE/CPE of V was checked by certified reference material of water (SRM-1643e). The extracted surfactant-rich phase (200 ??l) was mixed with 200 ??l of HNO3 in ethanol and this final volume was injected into electrothermal atomic absorption spectrometry with different modifiers. Under these conditions, the preconcentration of 25 ml sample solution allowed the raising of an enrichment factor of 100 and 10 folds for CPE and SPE, respectively. The concentration of V in surface water (river and lake), tap water and bottled mineral water samples was found to be in the range of 1.30?C19.9, 1.05?C5.25 and 0.67?C1.21 ??g l?1, respectively.  相似文献   

13.
In the present work, erioglaucine A was applied as internal standard to enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide. The following procedure was used: (1) addition of internal standard and formation of ion pairs of Cr (VI) with benzyltributylammonium bromide (BTAB) (sample volume 100 ml), (2) extraction to 10 ml of methylene chloride, (3) evaporation in nitrogen stream, and (4) redissolution in a micro-volume with addition of diphenylcarbazide for color development (final volume 200 mul). The preconcentration factor achieved was about 400 and it was shown that, using internal standard, the analytical errors due to sample treatment were reduced. The analytical signals for chromium and internal standard were obtained at 591.30 and 653.50 nm from first derivative spectra, normalized against (1)D(653.50nm). The analytical characteristics evaluated were: detection limit = 0.06 mug l(-1), quantification limit = 0.19 mug l(-1), precision for 1 mug l(-1) 14.2%, and for 10 mug l(-1) 3.2%, correlation coefficient of linear regression was 0.9985. The proposed procedure was applied to determination of chromium (VI) in tap water. Total chromium was determined by electrothermal atomic absorption spectrometry, the recovery of hexavalent chromium added was then evaluated and compared with the results of the proposed procedure. In this experiment, good agreement was obtained between results obtained by the two methods.  相似文献   

14.
Zhou CY  Wu J  Chi H  Wong MK  Koh LL  Wee YC 《Talanta》1995,42(3):415-422
A high performance liquid chromatographic method for the determination of ultra trace amount of aluminium in natural waters has been developed using lumogallion as a precolumn reagent for fluorimetric detection. The highly fluorescent Al-lumogallion chelate (lambda(ex) 500 nm, lambda(em) 574 nm) was separated on a LiChrosorb RP 18 column with an eluent containing 3:7 acetonitrile/0.02M potassium hydrogen phthalate buffer (pH 4.7) containing 10(-5)M lumogallion. The proposed system provides a simple, quick, selective and sensitive method for the determination of ultra-trace amount of aluminium in water samples. The detection limit defined as three times the standard deviation of the blank signal, was 0.05 mug/l. in water samples for 100 mul injection. The tolerance limits were 5 mg/l. for Fe(III) and F(-) and over 10 mg/l. for other foreign ions. The sensitivity of the method was independent of salinity. This method had been used for the direct determination of aluminium in both tap and coastal sea-waters without any preconcentration steps.  相似文献   

15.
The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.  相似文献   

16.
A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l−1 HCl at a flow rate of 82 μl min−1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l−1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h−1.  相似文献   

17.
Stadiober M  Kalcher K  Raber G  Neuhold C 《Talanta》1996,43(11):1915-1924
A method is described for the voltammetric determination of titanium(IV) using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. The cationic micellar surfactant adsorbs onto the electrode particularly at negative potentials, simultaneously preconcentrating titanium(IV) as the oxalate complex with reduction to titanium(III). Anodic stripping voltammetry exploiting reoxidation can be used for the determination of trace levels of titanium(IV). Linearity between current and concentration exists between 5 and 160 mug l(-1) Ti(IV) (preconcentration time 2 min). The limit of detection (calculated as 3sigma) is 0.1 mug l(-1), with a preconcentration time of 10 min.  相似文献   

18.
A chelating poly(dithiocarbamate) resin (PDTC) with macroreticular support is characterized as effective collector for traces of manganese from natural waters. Using small PDTC columns preconcentration of manganese can be achieved even at high flow-rates (5-6 ml/min) and sample volumes (1500 ml). Accordingly, PDTC resin is used for the preconcentration of manganese from water samples prior to its determination by flame atomic-absorption spectrometry. A series of ions abundant in natural waters do not interfere. The sensitivity and detection limit were 2.5 and 0.5 mug/l., respectively. The relative standard deviations of the results for a manganese concentration of 40-400 mug/l. are in the range 1.1-6.2%. In mineral and tap waters analysed, the manganese concentration range was between 2.9 and 30.8 mug/l.  相似文献   

19.
In this work, multi-walled carbon nanotubes (MWCNTs)-coated cellulose acetate membrane was used for on-line extraction and pre-concentration of uranium from aqueous samples prior to inductively coupled plasma optical emission spectrometry (ICP-OES) determination. Sample solutions containing the U(VI)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) complex were passed through the membrane. The adsorbed analyte was subsequently eluted from the membrane with acid, which was directly introduced into the ICP-OES nebuliser. The main variables affecting the pre-concentration and determination steps of uranium were studied and optimised. Under the optimised conditions, the enrichment factor of 150 and the detection limit of 0.16 μg L–1 were obtained. This method was successfully used for determination of uranium in environmental water samples.  相似文献   

20.
Rostampour L  Taher MA 《Talanta》2008,75(5):1279-1283
Natural clinoptilolite was used as a sorbent material for solid phase extraction and preconcentration of vanadium. The clinoptilolite was first saturated with a cation such as nickel(II) and then modified with benzyldimethyltetradecyleammonium chloride (BDTA) for increasing sorption of 4-(2-pyridylazo)resorcinol (PAR). Vanadium–PAR complex was quantitatively retained on the sorbent by the column method at the pH range 6.2–7.0 at a flow rate of 1 mL min−1. It was removed from the column with 5.0 mL of dimethylformamide solution at a flow rate of 0.8 mL min−1 and determined by UV–vis spectrophotometry at λmax = 550 nm. 0.031 μg of vanadium can be concentrated from 450 mL of aqueous sample (where detection limit as 0.07 ng mL−1 with preconcentration factor of 90). Relative standard deviation for eight replicate determination of 5.0 μg of vanadium in final solution is 2.1%. The interference of number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of all vanadium as V(IV) form in standard samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号