首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
We consider the Laplacian with attractive Robin boundary conditions,
$$\begin{aligned} Q^\Omega _\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text { on } \partial \Omega , \end{aligned}$$
in a class of bounded smooth domains \(\Omega \in \mathbb {R}^\nu \); here \(n\) is the outward unit normal and \(\alpha >0\) is a constant. We show that for each \(j\in \mathbb {N}\) and \(\alpha \rightarrow +\infty \), the \(j\)th eigenvalue \(E_j(Q^\Omega _\alpha )\) has the asymptotics
$$\begin{aligned} E_j(Q^\Omega _\alpha )=-\alpha ^2 -(\nu -1)H_\mathrm {max}(\Omega )\,\alpha +{\mathcal O}(\alpha ^{2/3}), \end{aligned}$$
where \(H_\mathrm {max}(\Omega )\) is the maximum mean curvature at \(\partial \Omega \). The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of \(H_\mathrm {max}\). In particular, we show that the ball is the strict minimizer of \(H_\mathrm {max}\) among the smooth star-shaped domains of a given volume, which leads to the following result: if \(B\) is a ball and \(\Omega \) is any other star-shaped smooth domain of the same volume, then for any fixed \(j\in \mathbb {N}\) we have \(E_j(Q^B_\alpha )>E_j(Q^\Omega _\alpha )\) for large \(\alpha \). An open question concerning a larger class of domains is formulated.
  相似文献   

2.
We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).  相似文献   

3.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

4.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

5.
In this paper, we establish a multiplicity result of nontrivial weak solutions for the problem \((-\Delta )^{\alpha } u +u= h(u)\)    in \(\Omega _{\lambda }\), \(u=0\)    on \(\partial \Omega _{\lambda }\), where \(\Omega _{\lambda }=\lambda \Omega \), \(\Omega \) is a smooth and bounded domain in \({\mathbb {R}}^N, N>2\alpha \), \(\lambda \) is a positive parameter, \(\alpha \in (0,1)\), \((-\Delta )^{\alpha }\) is the fractional Laplacian and the nonlinear term h(u) has subcritical growth. We use minimax methods, the Ljusternick–Schnirelmann and Morse theories to get multiplicity results depending on the topology of \(\Omega \).  相似文献   

6.
Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define
$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$
where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics
$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$
where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
  相似文献   

7.
In this paper, we consider the general space–time fractional equation of the form \(\sum _{j=1}^m \lambda _j \frac{\partial ^{\nu _j}}{\partial t^{\nu _j}} w(x_1, \ldots , x_n ; t) = -c^2 \left( -\varDelta \right) ^\beta w(x_1, \ldots , x_n ; t)\), for \(\nu _j \in \left( 0,1 \right] \) and \(\beta \in \left( 0,1 \right] \) with initial condition \(w(x_1, \ldots , x_n ; 0)= \prod _{j=1}^n \delta (x_j)\). We show that the solution of the Cauchy problem above coincides with the probability density of the n-dimensional vector process \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), where \(\varvec{S}_n^{2\beta }\) is an isotropic stable process independent from \(\mathcal {L}^{\nu _1, \ldots , \nu _m}(t)\), which is the inverse of \(\mathcal {H}^{\nu _1, \ldots , \nu _m} (t) = \sum _{j=1}^m \lambda _j^{1/\nu _j} H^{\nu _j} (t)\), \(t>0\), with \(H^{\nu _j}(t)\) independent, positively skewed stable random variables of order \(\nu _j\). The problem considered includes the fractional telegraph equation as a special case as well as the governing equation of stable processes. The composition \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), supplies a probabilistic representation for the solutions of the fractional equations above and coincides for \(\beta = 1\) with the n-dimensional Brownian motion at the random time \(\mathcal {L}^{\nu _1, \ldots , \nu _m} (t)\), \(t>0\). The iterated process \(\mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t)\), \(t>0\), inverse to \(\mathfrak {H}^{\nu _1, \ldots , \nu _m}_r (t) =\sum _{j=1}^m \lambda _j^{1/\nu _j} \, _1H^{\nu _j} \left( \, _2H^{\nu _j} \left( \, _3H^{\nu _j} \left( \ldots \, _{r}H^{\nu _j} (t) \ldots \right) \right) \right) \), \(t>0\), permits us to construct the process \(\varvec{S}_n^{2\beta } \left( c^2 \mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t) \right) \), \(t>0\), the density of which solves a space-fractional equation of the form of the generalized fractional telegraph equation. For \(r \rightarrow \infty \) and \(\beta = 1\), we obtain a probability density, independent from t, which represents the multidimensional generalization of the Gauss–Laplace law and solves the equation \(\sum _{j=1}^m \lambda _j w(x_1, \ldots , x_n) = c^2 \sum _{j=1}^n \frac{\partial ^2}{\partial x_j^2} w(x_1, \ldots , x_n)\). Our analysis represents a general framework of the interplay between fractional differential equations and composition of processes of which the iterated Brownian motion is a very particular case.  相似文献   

8.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

9.
In this paper, we study the existence of nontrivial solution to a quasi-linear problem where \( (-\Delta )_{p}^{s} u(x)=2\lim \nolimits _{\epsilon \rightarrow 0}\int _{\mathbb {R}^N \backslash B_{\varepsilon }(X)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{| x-y | ^{N+sp}}dy, \) \( x\in \mathbb {R}^N\) is a nonlocal and nonlinear operator and \( p\in (1,\infty )\), \( s \in (0,1) \), \( \lambda \in \mathbb {R} \), \( \Omega \subset \mathbb {R}^N (N\ge 2)\) is a bounded domain which smooth boundary \(\partial \Omega \). Using the variational methods based on the critical points theory, together with truncation and comparison techniques, we show that there exists a critical value \(\lambda _{*}>0\) of the parameter, such that if \(\lambda >\lambda _{*}\), the problem \((P)_{\lambda }\) has at least two positive solutions, if \(\lambda =\lambda _{*}\), the problem \((P)_{\lambda }\) has at least one positive solution and it has no positive solution if \(\lambda \in (0,\lambda _{*})\). Finally, we show that for all \(\lambda \ge \lambda _{*}\), the problem \((P)_{\lambda }\) has a smallest positive solution.
  相似文献   

10.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

11.
Given \(\rho >0\), we study the elliptic problem
$$\begin{aligned} \text {find } (U,\lambda )\in H^1_0(\Omega )\times {\mathbb {R}}\text { such that } {\left\{ \begin{array}{ll} -\Delta U+\lambda U=|U|^{p-1}U\\ \int _{\Omega } U^2\, dx=\rho , \end{array}\right. } \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^N\) is a bounded domain and \(p>1\) is Sobolev-subcritical, searching for conditions (about \(\rho \), N and p) for the existence of solutions. By the Gagliardo-Nirenberg inequality it follows that, when p is \(L^2\)-subcritical, i.e. \(1<p<1+4/N\), the problem admits solutions for every \(\rho >0\). In the \(L^2\)-critical and supercritical case, i.e. when \(1+4/N \le p < 2^*-1\), we show that, for any \(k\in {\mathbb {N}}\), the problem admits solutions having Morse index bounded above by k only if \(\rho \) is sufficiently small. Next we provide existence results for certain ranges of \(\rho \), which can be estimated in terms of the Dirichlet eigenvalues of \(-\Delta \) in \(H^1_0(\Omega )\), extending to changing sign solutions and to general domains some results obtained in Noris et al. in Anal. PDE 7:1807–1838, 2014 for positive solutions in the ball.
  相似文献   

12.
Huashui Zhan 《Acta Appl Math》2018,153(1):147-161
This paper is mainly about the infiltration equation
$$ {u_{t}}= \operatorname{div} \bigl(a(x)|u|^{\alpha }{ \vert { \nabla u} \vert ^{p-2}}\nabla u\bigr),\quad (x,t) \in \Omega \times (0,T), $$
where \(p>1\), \(\alpha >0\), \(a(x)\in C^{1}(\overline{\Omega })\), \(a(x)\geq 0\) with \(a(x)|_{x\in \partial \Omega }=0\). If there is a constant \(\beta \) such that \(\int_{\Omega }a^{-\beta }(x)dx\leq c\), \(p>1+\frac{1}{\beta }\), then the weak solution is smooth enough to define the trace on the boundary, the stability of the weak solutions can be proved as usual. Meanwhile, if for any \(\beta >\frac{1}{p-1}\), \(\int_{\Omega }a^{-\beta }(x)dxdt=\infty \), then the weak solution lacks the regularity to define the trace on the boundary. The main innovation of this paper is to introduce a new kind of the weak solutions. By these new definitions of the weak solutions, one can study the stability of the weak solutions without any boundary value condition.
  相似文献   

13.
14.
We study the existence problem for a class of nonlinear elliptic equations whose prototype is of the form \(-\Delta _p u = |\nabla u|^p + \sigma \) in a bounded domain \(\Omega \subset \mathbb {R}^n\). Here \(\Delta _p\), \(p>1\), is the standard p-Laplacian operator defined by \(\Delta _p u=\mathrm{div}\, (|\nabla u|^{p-2}\nabla u)\), and the datum \(\sigma \) is a signed distribution in \(\Omega \). The class of solutions that we are interested in consists of functions \(u\in W^{1,p}_0(\Omega )\) such that \(|\nabla u|\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\), a space pointwise Sobolev multipliers consisting of functions \(f\in L^{p}(\Omega )\) such that
$$\begin{aligned} \int _{\Omega } |f|^{p} |\varphi |^p dx \le C \int _{\Omega } (|\nabla \varphi |^p + |\varphi |^p) dx \quad \forall \varphi \in C^\infty (\Omega ), \end{aligned}$$
for some \(C>0\). This is a natural class of solutions at least when the distribution \(\sigma \) is nonnegative and compactly supported in \(\Omega \). We show essentially that, with only a gap in the smallness constants, the above equation has a solution in this class if and only if one can write \(\sigma =\mathrm{div}\, F\) for a vector field F such that \(|F|^{\frac{1}{p-1}}\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\). As an important application, via the exponential transformation \(u\mapsto v=e^{\frac{u}{p-1}}\), we obtain an existence result for the quasilinear equation of Schrödinger type \(-\Delta _p v = \sigma \, v^{p-1}\), \(v\ge 0\) in \(\Omega \), and \(v=1\) on \(\partial \Omega \), which is interesting in its own right.
  相似文献   

15.
In this paper we study the following singular p(x)-Laplacian problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).
  相似文献   

16.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

17.
We develop structural insights into the Littlewood–Richardson graph, whose number of vertices equals the Littlewood–Richardson coefficient \(c_{\lambda ,\mu }^{\nu }\) for given partitions \(\lambda \), \(\mu \), and \(\nu \). This graph was first introduced in Bürgisser and Ikenmeyer (SIAM J Discrete Math 27(4):1639–1681, 2013), where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood–Richardson coefficient: We design an algorithm for the exact computation of \(c_{\lambda ,\mu }^{\nu }\) with running time \(\mathcal {O}\big ((c_{\lambda ,\mu }^{\nu })^2 \cdot {\textsf {poly}}(n)\big )\), where \(\lambda \), \(\mu \), and \(\nu \) are partitions of length at most n. Moreover, we introduce an algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge t\) whose running time is \(\mathcal {O}\big (t^2 \cdot {\textsf {poly}}(n)\big )\). Even the existence of a polynomial-time algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge 2\) is a nontrivial new result on its own. Our insights also lead to the proof of a conjecture by King et al. (Symmetry in physics. American Mathematical Society, Providence, 2004), stating that \(c_{\lambda ,\mu }^{\nu }=2\) implies \(c_{M\lambda ,M\mu }^{M\nu } = M+1\) for all \(M \in \mathbb {N}\). Here, the stretching of partitions is defined componentwise.  相似文献   

18.
We consider the stationary Keller–Segel equation
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+v=\lambda e^v, \quad v>0 \quad &{} \text {in }\Omega ,\\ \partial _\nu v=0 &{}\text {on } \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a ball. In the regime \(\lambda \rightarrow 0\), we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given \(n\in \mathbb {N}_0\), we build a solution having multiple layers at \(r_1,\ldots ,r_n\) by which we mean that the solutions concentrate on the spheres of radii \(r_i\) as \(\lambda \rightarrow 0\) (for all \(i=1,\ldots ,n\)). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of \(\Omega \) as \(\lambda \rightarrow 0\). Instead they satisfy an optimal partition problem in the limit.
  相似文献   

19.
For the natural two-parameter filtration \(\left( {\mathcal {F}_\lambda }: {\lambda \in P}\right) \) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on \(L^p(\Omega _0)\) for \(p \in (1, \infty )\). At the end, we consider \(L^p(\Omega _0)\) boundedness of martingale transforms. If the building is of \({\text {GL}}(3, \mathbb {Q}_p)\), then \(\Omega _0\) can be identified with p-adic Heisenberg group.  相似文献   

20.
We present a way to study a wide class of optimal design problems with a perimeter penalization. More precisely, we address existence and regularity properties of saddle points of energies of the form
$$\begin{aligned} (u,A) \quad \mapsto \quad \int _\Omega 2fu \,\mathrm {d}x \; - \int _{\Omega \cap A} \sigma _1\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; - \int _{\Omega {\setminus } A} \sigma _2\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; + \; \text {Per }(A;\overline{\Omega }), \end{aligned}$$
where \(\Omega \) is a bounded Lipschitz domain, \(A\subset \mathbb {R}^N\) is a Borel set, \(u:\Omega \subset \mathbb {R}^N \rightarrow \mathbb {R}^d\), \(\mathscr {A}\) is an operator of gradient form, and \(\sigma _1, \sigma _2\) are two not necessarily well-ordered symmetric tensors. The class of operators of gradient form includes scalar- and vector-valued gradients, symmetrized gradients, and higher order gradients. Therefore, our results may be applied to a wide range of problems in elasticity, conductivity or plasticity models. In this context and under mild assumptions on f, we show for a solution (wA), that the topological boundary of \(A \cap \Omega \) is locally a \(\mathrm {C}^1\)-hypersurface up to a closed set of zero \(\mathscr {H}^{N-1}\)-measure.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号