首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We develop a bicompletion theory for the category Ap0 of T0 approach spaces in the sense of Lowen [R. Lowen, Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford University Press, Oxford, 1997], which extends the completion theory obtained in [R. Lowen, K. Robeys., Completions of products of metric spaces, Quart. J. Math. Oxford 43 (1991) 319-338] for the subcategory of Hausdorff uniform approach spaces. Moreover, we prove it to be firmly epireflective (in the sense of [G.C.L. Brümmer, E. Giuli, A categorical concept of completion of objects, Comment. Math. Univ. Carolin. 33 (1992) 131-147]) with respect to a certain morphism class of dense embeddings.  相似文献   

2.
3.
The work of the present author and his coauthors over the past years gives evidence that it may be useful to regard each topological space as a kind of enriched category, by interpreting the convergence relation xx between ultrafilters and points of a topological space X as arrows in X. Naturally, this point of view opens the door to the use of concepts and ideas from enriched Category Theory for the investigation of topological spaces. Topological theories introduced by the author provide a convenient general setting for appropriately transferring these concepts and ideas to the world of topological spaces and some other geometric objects such as approach spaces. Using tools like adjunction and the Yoneda lemma, we show that the cocomplete spaces are precisely the injective spaces, and they are algebras for a suitable monad on . This way we obtain enriched versions of known results about injective topological spaces and continuous lattices.  相似文献   

4.
The main result, in Theorem 3, is that in the category Unif of Hausdorff uniform spaces and uniformly continuous maps, the coreflective hulls of the following classes are cartesian-closed: all metric spaces having no infinite uniform partition, all connected metric spaces, all bounded metric spaces, and all injective metric spaces.Furthermore, Theorems 1 and 4 imply that if C is any coreflective, cartesian-closed subcategory of Unif in which enough function space structures are finer than the uniformity of uniform convergence (as in the above examples), then either (1) C is a subclass of the locally fine spaces, or (2) C contains all injective metric spaces and C is a subclass of the coreflective hull of all uniform spaces having no infinite uniform partition.  相似文献   

5.
《Quaestiones Mathematicae》2013,36(1-3):59-84
This paper is motivated by the search for natural extensions of classical uniform space results to quasi-uniform spaces. As instances of such extensions we restate some theorems of P. Fletcher and W.F. Lindgren [Pacific J. Math. 43 (1971), 619–6311 on transitive quasi-uniformities and of S. Salbany [Thesis, Univ. Cape Town, 1971] on compactification and completion. The theorems as restated describe properties of certain right inverses of the functor which forgets the quasi-uniform structure and retains one induced topology (for Fletcher and Lindgren's work), respectively retains both induced topologies (for Salbany's work). Accordingly we investigate systematically the process by which the right inverses of the forgetful functors can be extended from the classical setting to one of these settings, and from one of these to the other.  相似文献   

6.
《Quaestiones Mathematicae》2013,36(3-4):453-466
Abstract

Local compactness is studied in the highly convenient setting of semi-uniform convergence spaces which form a common generalization of (symmetric) limit spaces (and thus of symmetric topological spaces) as well as of uniform limit spaces (and thus of uniform spaces). It turns out that it leads to a cartesian closed topological category and, in contrast to the situation for topological spaces, the local compact spaces are exactly the compactly generated spaces. Furthermore, a one-point Hausdorff compactification for noncompact locally compact Hausdorff convergence spaces is considered.1  相似文献   

7.
Straight spaces are spaces for which a continuous map defined on the space which is uniformly continuous on each set of a finite closed cover is then uniformly continuous on the whole space. Previously, straight spaces have been studied in the setting of metric spaces. In this paper, we present a study of straight spaces in the more general setting of nearness spaces. In a subcategory of nearness spaces somewhat more general than uniform spaces, we relate straightness to uniform local connectedness. We investigate category theoretic situations involving straight spaces. We prove that straightness is preserved by final sinks, in particular by sums and by quotients, and also by completions.  相似文献   

8.
The theory of metrically generated constructs provides us with an excellent setting for the study of function spaces. In this paper we develop a function space theory for metrically generated constructs and, by considering different metrically generated constructs, we capture interesting examples. For instance, for uniform spaces we retrieve the uniformity of uniform convergence and its generalization to Σ-convergence and for UG-spaces we obtain a quantified version of these structures. Our theory also allows for many applications, in particular we are able to characterize the complete subspaces of these function spaces and we succeed in producing an appropriate Ascoli theorem.  相似文献   

9.
A concrete category K is a CCT (cartesian closed topological) extension of the category Unif of uniform spaces if 1. K is cartesian closed, 2. Unif is a full, finitely productive subcategory of K and the forgetful functor of K extends that of Unif and 3. K has initial structures. We describe the smallest CCT extension of Unif which is called the CCT hull by H. Herrlich and L.D. Nel. The objects of the CCT hull are bornological uniform spaces, i.e. uniform spaces endowed with a collection of “bounded” sets related naturally to the uniformity; the morphisms are the uniformly continuous maps which preserve the bounded sets.  相似文献   

10.
Semiuniform convergence spaces form a common generalization of filter spaces (including symmetric convergence spaces [and thus symmetric topological spaces] as well as Cauchy spaces) and uniform limit spaces (including uniform spaces) with many convenient properties such as cartesian closedness, hereditariness and the fact that products of quotients are quotients. Here, for each semiuniform convergence space a completion is constructed, called the simple completion. This one generalizes Császár's -completion of filter spaces. Thus, filter spaces are characterized as subspaces of convergence spaces. Furthermore, Wyler's completion of separated uniform limit spaces can be easily derived from the simple completion.  相似文献   

11.
We introduce the notions of a brush space and a weak brush space. Each of these spaces has a compact connected core with attached connected fibers and may be either compact or non-compact. Many spaces, both in the Hausdorff non-metrizable setting and in the metric setting, have realizations as (weak) brush spaces. We show that these spaces have the fixed point property if and only if subspaces with core and finitely many fibers have the fixed point property. This result generalizes the fixed point result for generalized Alexandroff/Urysohn Squares in Hagopian and Marsh (2010) [4]. We also look at some familiar examples, with and without the fixed point property, from Bing (1969) [1], Connell (1959) [3], Knill (1967) [7] and note the brush space structures related to these examples.  相似文献   

12.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(1-3):23-43
A concept of normality for nearness spaces is introduced which agrees with the usual normality in the case of topological spaces, is hereditary, and is preserved under the taking of the nearness completion. It is proved that the nearness product of a regular contigual space and a normal nearness space is always normal. The locally fine nearness spaces are studied, particularly in relation to normality conditions.  相似文献   

14.
15.
The construct M of metered spaces and contractions is known to be a superconstruct in which all metrically generated constructs can be fully embedded. We show that M has one point extensions and that quotients in M are productive. We construct a Cartesian closed topological extension of M and characterize the canonical function spaces with underlying sets Hom(X,Y) for metered spaces X and Y. Finally we obtain an internal characterization of the objects in the Cartesian closed topological hull of M.  相似文献   

16.
It was shown in Lafuerza-Guillén, Rodríguez-Lallena and Sempi (1999) [8] that uniform boundedness in a Šerstnev PN space (V,ν,τ,τ), (named boundedness in the present setting) of a subset AV with respect to the strong topology is equivalent to the fact that the probabilistic radius RA of A is an element of D+. Here we extend the equivalence just mentioned to a larger class of PN spaces, namely those PN spaces that are topological vector spaces (briefly TV spaces), but are not Šerstnev PN spaces.We present a characterization of those PN spaces, whether they are TV spaces or not, in which the equivalence holds. Then, a characterization of the Archimedeanity of triangle functions τ of type τT,L is given. This work is a partial solution to a problem of comparing the concepts of distributional boundedness (D-bounded in short) and that of boundedness in the sense of associated strong topology.  相似文献   

17.
《Quaestiones Mathematicae》2013,36(3):341-357
Abstract

In this paper uniformly locally uniformly connected merotopic spaces are studied. It turns out that their structural behaviour is essentially similar to that one of locally connected topological spaces. The introduced concept is also investigated for spaces of functions between filter-merotopic spaces (e.g. topological spaces, proximity spaces, convergence spaces) and the relationship to other concepts of local connectedness is clarified. In particular, the category of uniformly locally uniformly connected filter-merotopic spaces is Cartesian closed.  相似文献   

18.
We develop a generalized covering space theory for a class of uniform spaces called coverable spaces. Coverable spaces include all geodesic metric spaces, connected and locally pathwise connected compact topological spaces, in particular Peano continua, as well as more pathological spaces like the topologist's sine curve. The uniform universal cover of a coverable space is a kind of generalized cover with universal and lifting properties in the category of uniform spaces and uniformly continuous mappings. Associated with the uniform universal cover is a functorial uniform space invariant called the deck group, which is related to the classical fundamental group by a natural homomorphism. We obtain some specific results for one-dimensional spaces.  相似文献   

19.
Employing a formal analogy between ordered sets and topological spaces, over the past years we have investigated a notion of cocompleteness for topological, approach and other kind of spaces. In this new context, the down-set monad becomes the filter monad, cocomplete ordered set translates to continuous lattice, distributivity means disconnectedness, and so on. Curiously, the dual(?) notion of completeness does not behave as the mirror image of the one of cocompleteness; and in this paper we have a closer look at complete spaces. In particular, we construct the “up-set monad” on representable spaces (in the sense of L. Nachbin for topological spaces, respectively C. Hermida for multicategories); we show that this monad is of Kock–Zöberlein type; we introduce and study a notion of weighted limit similar to the classical notion for enriched categories; and we describe the Kleisli category of our “up-set monad”. We emphasise that these generic categorical notions and results can be indeed connected to more “classical” topology: for topological spaces, the “up-set monad” becomes the lower Vietoris monad, and the statement “X   is totally cocomplete if and only if XopXop is totally complete” specialises to O. Wyler's characterisation of the algebras of the Vietoris monad on compact Hausdorff spaces as precisely the continuous lattices.  相似文献   

20.
Within the class of Tychonoff spaces, and within the class of topological groups, most of the natural questions concerning ‘productive closure’ of the subclasses of countably compact and pseudocompact spaces are answered by the following three well-known results: (1) [ZFC] There is a countably compact Tychonoff space X such that X × X is not pseudocompact; (2) [ZFC] The product of any set of pseudocompact topological groups is pseudocompact; and (3) [ZFC+ MA] There are countably compact topological groups G0, G1 such that G0 × G1 is not countably compact.In this paper we consider the question of ‘productive closure” in the intermediate class of homogeneous spaces. Our principal result, whose proof leans heavily on a simple, elegant result of V.V. Uspenski?, is this: In ZFC there are pseudocompact, homogeneous spaces X0, X1 such that X0 × X1 is not pseudocompact; if in addition MA is assumed, the spaces Xi may be chosen countably compact.Our construction yields an unexpected corollary in a different direction: Every compact space embeds as a retract in a countably compact, homogeneous space. Thus for every cardinal number α there is a countably compact, homogeneous space whose Souslin number exceeds α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号