首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
We study the nonlinear dynamics of DNA which takes into account the twist-opening interactions due to the helicoidal molecular geometry. The small amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear Schrödinger equations. We analyze the modulational instability and solitary wave solution in the case. On the basis of this system, we present the condition for modulation instability occurrence and attention is paid to the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. Through the Jacobian elliptic function method, we derive a set of exact solutions of the twist-opening model of DNA. These solutions include, Jacobian periodic solution as well as kink and kink-bubble solitons.  相似文献   

2.
A rigorous nonlinear stability result is derived by introducing a suitable generalized energy functional for a magnetized ferrofluid layer heated and soluted from below with magnetic field-dependent (MFD) viscosity, for stress-free boundaries. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. For ferrofluids, we find that there is possibility of existence of subcritical instabilities, however, it is noted that in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effects of magnetic parameter, M3, solute gradient, S1 and MFD viscosity parameter, δ, on the subcritical instability region have also been analyzed.  相似文献   

3.
4.
We consider the nonlinear interactions between finite amplitude electron and ion plasma oscillations in a fermionic quantum plasma. Accounting for the quantum statistical electron pressure and the quantum Bohm potential, we derive a set of coupled nonlinear equations that govern the dynamics of modulated electron plasma oscillations (EPOs) in the presence of the nonlinear ion oscillations (NLIOs). We numerically study stationary solutions of our coupled nonlinear equations. We find that the quantum parameter H (equal to the ratio between the plasmonic and electron Fermi energy densities) introduces new features to the electron density and electric potential humps of localized NLIOs in the absence of EPOs. Furthermore, the nonlinear coupling between the EPOs and NLIOs gives rise to a new class of envelope solitons composed of bell shaped electric field envelope of the EPOs, which are trapped in the electron density hole (and an associated negative oscillatory electric potential) that is produced by the ponderomotive force of the EPOs. The knowledge of the localized plasmonic structures is of immense value for interpreting experimental observations in dense quantum plasmas.  相似文献   

5.
The formation and evolution of the ionization nonuniformities from initial disturbances of finite amplitude in the nonequilibrium Ar-Cs plasma in a disk magnetohydrodynamic (MHD) generator is studied by the numerical simulation, The simulations are carried out in the wide interval of electron temperatures corresponding to the region at which the seed partially ionizes, the region of the linear plasma stability at the fully ionized seed, and the region of the instability corresponding to the partial ionization of Ar at high electron temperatures. Initial disturbances of finite amplitude in electron temperature and density are introduced at the time t=0 into the homogeneous plasma distribution, and the critical amplitudes determining the development of the instability are calculated. The initial disturbances are constructed using random functions with different spatial scales, The results are compared with the calculation of the critical amplitudes from the nonlinear theory of the plane ionization waves, It is found that at electron temperatures lower than 5500 K, the temperature dependence of the critical amplitudes and the structure of the nonlinear waves agree well with the nonlinear theory, In the electron temperature region corresponding to the partial ionization of the noble gas (Te>5500 K), the finite ionization rate of argon atoms is essential for analysis of the instability, In this region the margin of the plasma stability is wider than it is predicted by the nonlinear theory, The nonuniformity in the argon ion number density plays the dominating role in the instability development at high electron temperatures (Te>5500 K) in comparison with the nonuniformity in Te in the initial disturbances,  相似文献   

6.
Gouy wave modes are linear waves with finite energy that propagate without distortion at any phase and group velocity through a focal region in a dispersive medium. These features make them potentially useful for the onset and control of nonlinear interactions.  相似文献   

7.
We demonstrate a possibility to stabilize three-dimensional spatiotemporal solitons (“light bullets”) in self-focusing Kerr media by means of a combination of dispersion management in the longitudinal direction (with the group-velocity dispersion alternating between positive and negative values) and periodic modulation of the refractive index in one transverse direction (out of the two). Assuming the usual model based on the paraxial nonlinear Schrödinger equation for the local amplitude of the electromagnetic field, the analysis relies upon the variational approximation (results of direct three-dimensional simulations will be reported in a follow-up). A predicted stability area is identified in the model’s parameter space. It features a minimum of the necessary strength of the transverse modulation of the refractive index, and finite minimum and maximum values of the soliton’s energy. The former feature is also explained analytically.  相似文献   

8.
The soliton theory of the motion of an extra electron (intramolecular excitation) in one-dimensional molecular structures with a strong electron (exciton)-phonon coupling is developed for a wide class of nonlinear (realistic) nearest-neighbour interactions which provide finite values of the soliton dynamical quantities at velocities less than or equal to that of sound.  相似文献   

9.
The nonlinear bulk compressibility of entangled multiwalled carbon nanotubes is studied. The analogy with textile fibre assemblies is explored by means of the well established van Wyk model. In view of the small diameter of the nanotubes, the possible effect of adhesive van der Waals interactions at tube-tube contacts is analysed. It is found, however, that the contribution of adhesive contacts to the bulk stress should be negligible. Compression experiments are performed on multi-walled carbon nanotubes and show that van Wyk's model is able to describe the response, although the values of the dimensionless parameter k of van Wyk's model were lower than expected. There is indeed no indication that van der Waals interactions play any significant role.  相似文献   

10.
We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a nonlinear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.  相似文献   

11.
This paper describes two new techniques which give improved exponential finite difference solutions of Burgers’ equation. These techniques are called implicit exponential finite difference method and fully implicit exponential finite difference method for solving Burgers’ equation. As the Burgers’ equation is nonlinear, the scheme leads to a system of nonlinear equations. At each time-step, Newton’s method is used to solve this nonlinear system. The results are compared with exact values and it is clearly shown that results obtained using both the methods are precise and reliable.  相似文献   

12.
We investigate the onset and maintenance of nonlinear soliton-like excitations in chains of atoms with Morse interactions at rather high densities, where the exponential repulsion dominates. First we discuss the atomic interactions and approximate the Morse potential by an effective Toda potential with adapted density-dependent parameters. Then we study several mechanisms to generate and stabilize the soliton-like excitations: (i) External forcing: we shake the masses periodically, mimicking a piezoelectric-like excitation, and delay subsequent damping by thermal excitation; (ii) heating, quenching and active friction: we heat up the system to a relatively high temperature Gaussian distribution, then quench to a low temperature, and subsequently stabilize by active friction. Finally, we assume that the atoms in the chain are ionized with free electrons able to move along the lattice. We show that the nonlinear soliton-like excitations running on the chain interact with the electrons. They influence their motion in the presence of an external field creating dynamic bound states (“solectrons”, etc.). We show that these bound states can move very fast and create extra current. The soliton-induced contribution to the current is constant, field-independent for a significant range of values when approaching the zero-field value.  相似文献   

13.
Abstract

We develop a consistent mathematical theory of weakly nonlinear periodic dielectric media for the dimensions one, two and three. The theory is based on the Maxwell equations with classical quadratic and cubic constitutive relations. In particular, we give a complete classification of different nonlinear interactions between Floquet–Bloch modes based on indices which measure the strength of the interactions. The indices take on a small number of prescribed values which are collected in a table. The theory rests on the asymptotic analysis of oscillatory integrals describing the nonlinear interactions.  相似文献   

14.
At singular points of a wave field, where the amplitude vanishes, the phase may become singular and wavefront dislocation may occur. In this Letter we investigate for wave fields in one spatial dimension the appearance of these essentially linear phenomena. We introduce the Chu-Mei quotient as it is known to appear in the ‘nonlinear dispersion relation’ for wave groups as a consequence of the nonlinear transformation of the complex amplitude to real phase-amplitude variables. We show that unboundedness of this quotient at a singular point, related to unboundedness of the local wavenumber and frequency, is a generic property and that it is necessary for the occurrence of phase singularity and wavefront dislocation, while these phenomena are generic too. We also show that the ‘soliton on finite background’, an explicit solution of the NLS equation and a model for modulational instability leading to extreme waves, possesses wavefront dislocations and unboundedness of the Chu-Mei quotient.  相似文献   

15.
Hu K  Peng CK  Huang NE  Wu Z  Lipsitz LA  Cavallerano J  Novak V 《Physica A》2008,387(10):2279-2292
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique—the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (<0.1 Hz), but also over the higher frequency range from ∼0.1 to 0.4 Hz. These findings indicate that type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.  相似文献   

16.
A numerical model for describing the counterpropagation of one-dimensional waves in a nonlinear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is based on general one-dimensional Navier-Stokes equations with absorption in the form of a time-domain convolution operator in the equation of state. The developed algorithm makes it possible to describe wave interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into account using the causal memory function. The developed model is used for numerical calculations, which demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as well as their reflection from impedance acoustic boundaries.  相似文献   

17.
Brian D. Serot 《Annals of Physics》2007,322(12):2811-2830
Electromagnetic (EM) interactions are incorporated in a recently proposed effective field theory of the nuclear many-body problem. Earlier work with this effective theory exhibited EM couplings that are correct only to lowest order in both the pion fields and the electric charge. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields. The theory exhibits a nonlinear realization of SU(2)L × SU(2)R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. It has been verified that for normal nuclear systems, the effective lagrangian can be expanded systematically in powers of the meson fields (and their derivatives) and can be truncated reliably after the first few orders. The complete EM lagrangian arising from minimal substitution is derived and shown to possess the residual chiral symmetry of massless, two-flavor QCD with EM interactions. The uniqueness of the minimal EM current is proved, and the properties of the isovector vector and axial-vector currents are discussed, generalizing earlier work. The residual chiral symmetry is maintained in additional (non-minimal) EM couplings expressed as a derivative expansion and in implementing vector meson dominance. The role of chiral anomalies in the EM lagrangian is briefly discussed.  相似文献   

18.
It is shown experimentally that NdAl2 and hcp cobalt are one-dimensional (1D) bulk ferromagnets. For hcp cobalt this is only under the condition that the sample is magnetically saturated, i.e. that all moments are aligned parallel to the hexagonal c-axis. In 1D magnets the transverse interactions need not to be zero but must be sufficiently weak such that the transverse correlation length does not diverge at the critical temperature. The transverse interactions are then not relevant and the phase transition is driven by the longitudinal interactions. On the other hand, magnetic Bragg scattering relies on finite transverse correlations. For NdAl2 no conventional magnetic Bragg scattering is observed if all moments are aligned vertical to the scattering plane by a magnetic field. For hcp cobalt the scattering intensity is considerably reduced in this geometry instead of having its maximum. From this observation it can be concluded that the transverse correlation length is practically zero in NdAl2 but has a finite value in hcp cobalt. The macroscopic magnetization shows normal ferromagnetic saturation.  相似文献   

19.
Study of the nuclear second moments, important inputs to pre-equilibrium reaction theories, is extended to residual interactions of finite range. The interactions are assumed to have general spin and isospin dependence. The second moments are found to be always positive definite for commonly used values of the interaction parameters. They seem to support the strong coupling limit of the pre-equilibrium reaction theory by Nishioka et al. [1], which would imply the modification of the phenomenological model used in analyzing experimental data. As an application of the second moments, it is also investigated how the nuclear level densities change with the parameter values of the residual interaction. The results show the important role of the residual interaction especially in the low energy region, which may greatly improve the agreement with experimental data at thermal neutron resonances.  相似文献   

20.
H. Alinejad 《Physics letters. A》2009,373(33):2935-2939
The effect of deviations from isothermality of ions on arbitrary amplitude dust-acoustic solitary structures is studied in an unmagnetized dusty plasma which consists of a negative charged dust fluid, free electrons and hot ions obeying a trapped distribution. For the finite deviation from isothermality of ions, the basic properties of large amplitude solitary waves are studied by employing pseudo-potential approach. It is shown that the effect of such ion behavior changes the maximum values of the Mach number and the amplitude for which solitary wave can exist. For the case that the deviation from isothermality due to nonlinear resonant particle effects is small, calculations by reductive perturbation method leads to a generalized Korteweg-de Vries equation with mixed nonlinearity. The latter admits a stationary dust-acoustic solitary solution with similar width and qualitatively different amplitude in comparison to the case that deviations from isothermality are finite. Furthermore, effects of the equilibrium free electron density and such trapped ions on the amplitude of solitary structures imply a non-uniform transition from the Boltzmann ion distribution to the trapped ion one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号