首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new supramolecular entities of Cu(II) were synthesized and characterized: [(Cu(H(2)O)(tmen))(2)(mu-Cu(H(2)O)(opba))](2)[(ClO(4))(2)](2).2H(2)O (1), [(Cu(H(2)O)(tmen))(2) (mu-Cu(H(2)O) (Me(2)pba))](2)[(ClO(4))(2)](2) (2), and [(Cu(H(2)O)(tmen))(Cu(tmen))(mu-Cu(OHpba))](n)() ((ClO(4))(2))(n)().nH(2)O (3), where opba = o-phenylenbis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), OHpba = 2-hydroxy-1,3-propylenbis(oxamato), and tmen = N,N,N'N'-tetramethylethylenediamine. The crystal structures of 1, 2, and 3 were solved. Complex 1 crystallizes in the monoclinic system, space group C2/c with a = 20.572(4) A, b = 17.279(6) A, c = 22.023(19) A, beta = 103.13(4) degrees, and Z = 8. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 16.7555(7) A, b = 13.5173(5) A, c = 17.1240(7) A, beta = 104.9840(10) degrees, and Z = 4. Complex 3 crystallizes in the orthorhombic system, space group Pca2(1) with a = 21.2859(4) A, b = 12.8286(10) A, c = 12.6456(2) A, and Z = 4. The three complexes are very similar in structure: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine, but with a different environment in the Cu(II) central ion. In the case of complex 1, two of these trinuclear entities are packed with a short distance between the central Cu(II) ions of two separate entities forming a hexanuclear-type compound. In the case of 2, two of these trinuclear entities are linked by a hydrogen bond between a water molecule of one terminal Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, also forming a hexanuclear complex. In the case of complex 3, the intermolecular linkages give a one-dimensional system where the OH groups of the OHpba entities are linked to the terminal Cu(II) of the neighboring entities. The magnetic properties of the three complexes were studied by susceptibility measurements vs temperature. For complex 1, an intramolecular J value of -312.1 cm(-)(1) and a contact dipolar interaction of -0.44K were found. For complex 2 and 3 the fit was made by the irreducible tensor operator formalism (ITO). The values obtained were as follows: J(1) = -333.9 cm(-)(1) and J(2) = 0.67 cm(-)(1) for 2 and J(1) = -335.9 cm(-)(1) and J(2) = 3.5 cm(-)(1) for 3.  相似文献   

2.
Gao EQ  Tang JK  Liao DZ  Jiang ZH  Yan SP  Wang GL 《Inorganic chemistry》2001,40(13):3134-3140
Four oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(bispictn)](2)Cu(pba))(ClO(4))(2).2.5H(2)O (1), ([Ni(bispictn)](2)Cu(pbaOH))(ClO(4))(2).H(2)O (2), ([Ni(cth)](2)Cu(pba))(ClO(4))(2) (3), and ([Ni(cth)](2)Cu(opba))(ClO(4))(2).H(2)O (4) and a binuclear Ni(II)Cu(II) complex of formula [Cu(opba)Ni(cth)].CH(3)OH (5) have been synthesized and characterized by means of elemental analysis, IR, ESR, and electronic spectra, where pba = 1,3-propylenebis(oxamato), pbaOH = 2-hydroxyl-1,3-propylenebis(oxamato), opba = o-phenylenebis(oxamato), bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, and cth = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of 1, 3, and 5 have been determined. The structures of complexes 1 and 3 consist of trinuclear cations and perchlorate anions, and that of 5 consists of neutral binuclear molecules which are connected by hydrogen bonds and pi-pi interactions to produce a unique supramolecular "double" sheet. In the three complexes, the copper atom in a square-planar or axially elongated octahedral environment and the nickel atom in a distorted octahedral environment are bridged by the oxamato groups, with Cu.Ni separations between 5.29 and 5.33 A. The magnetic properties of all five complexes have been investigated. The chi(M)T versus T plots for 1-4 exhibit the minimum characteristic of antiferromagnetically coupled NiCuNi species with an irregular spin state structure and a spin-quartet ground state. The chi(M)T versus T plot for 5 is typical of an antiferromagnetically coupled NiCu pair with a spin-doublet ground state. The Ni(II)-Cu(II) isotropic interaction parameters for the five complexes were evaluated and are between 102 and 108 cm(-)(1) (H = -JS(Cu).S(Ni)).  相似文献   

3.
Three oxamato-bridged copper(II) complexes of formula [(Cu(H(2)O)(tmen)Cu(tmen))(mu-Cu(H(2)O)(Me(2)pba))](n)((PF(6))(2))(n).2nH(2)O (1), [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(ClO(4))(2).4H(2)O (2), and [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(PF(6))(2).4H(2)O (3), where Me(2)pba = 2,2-dimethyl-1,3-propylenebis(oxamato) and tmen = N,N,N',N'-tetramethylethylenediamine, have been synthesized and characterized. Their crystal structures were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1), with a = 15.8364(3) A, b =8.4592(2) A, c = 15.952 A, beta = 101.9070(10) degrees, and Z = 2. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.69530(10) A, b = 18.2441(3) A, c = 31.6127(5) A, beta = 90.1230(10) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.68970(10) A, b = 18.150 A, c = 32.1949(4) A, beta = 90.0820(10) degrees, and Z = 4. The three complexes have a central core in common: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine. The structure of complex 1 consists of trinuclear cationic entities connected by hydrogen bonds to produce a supramolecular one-dimensional array. The structure of complexes 2 and 3 consist of trinuclear cationic entities linked by pairs by hydrogen bonds between the water molecule of the central Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, forming a hexanuclear complex. The magnetic properties of the three complexes were studied by susceptibility vs temperature measurement. For complexes 1-3 the fit was made by the irreducible tensor operator (ITO). The values obtained were J(1) = -386.48 cm(-1) and J(2) = 1.94 cm(-1) for 1, J(1) = -125.77 cm(-1) and J(2) = 0.85 cm(-1) for 2, and J(1) = -135.50 cm(-1) and J(2) = 0.94 cm(-1) for 3. In complex 1, the coordination polyhedron of the terminal Cu(II) atoms can be considered as square pyramidal; the apical positions are filled by the oxygen atom from a water molecule in the former and a F atom of the hexafluorophosphate anion in the latter showing a quasi-planar [Cu(CuMe(2)pba)Cu] network. For complexes 2 and 3, the square pyramidal environment of the terminal Cu(II) ions was strongly modified. To our knowledge, this is the first time that the longest distance (apical) in complexes with oxamato derivatives and bidentate amines as blocking ligands has been reported in one of the oxamato arms. The great difference in J(1) values between 1 and the other two complexes is interpreted as an orbital reversal of the magnetic orbitals of the terminal Cu(II) ions in 2 and 3.  相似文献   

4.
Several cyanogold complexes react with the binuclear nickel complex [(Ni(dien)(H(2)O))(2)(mu-ox)](PF(6))(2).2H(2)O to give the compounds [(Ni(dien)(H(2)O))(2)(mu-ox)]Br(2) (1), [(Ni(dien)(Au(CN)(2)))(2)(mu-ox)] (2), and [(Ni(dien))(2)(mu-ox)(mu-Au(CN)(4))](PF(6)) (3) (dien, diethilenetriamine; ox, oxalate). In the case of compounds 2 and 3, water displacement by the corresponding cyanogold complex takes place, whereas compound 1 is formed by a substitution of the anion. The crystal structures of compounds 1 and 2 present a 2D arrangement where the layers are connected by van der Waals forces (1) or N-H.Ntbd1;C hydrogen bonds (2), where each binuclear complex is hydrogen bonded to its neighbors, whereas compound 3 presents a novel structure where the tetracyanoaurate acts as a bridging ligand to give a polymeric compound. Magnetic studies of these compounds reveal an antiferromagnetic behavior. Finally, density functional theory (DFT) calculations have been performed on isolated models of compounds 2 and 3 in order to gain some insight about the different behavior of the [Au(CN)(2)](-) and [Au(CN)(4)](-) groups as ligands and proton acceptors in hydrogen bonds.  相似文献   

5.
The two flexible multidentate ligands 1,3-bis(8-thioquinolyl)propane (C3TQ) and 1,4-bis(8-thioquinolyl)butane (C4TQ) were reacted with AgX (X = CF(3)SO(3)(-) or ClO(4)(-)) to give four new complexes: ([Ag(C3TQ)](ClO(4)))(n)() 1, ([Ag(C3TQ)](CF(3)SO(3)))(n)() 2, ([Ag(2)(C4TQ)(CF(3)SO(3))(CH(3)CN)](CF(3)SO(3)))(n)() 3, and ([Ag(C4TQ)](ClO(4)))(n)() 4. All complexes have been characterized by elemental analysis, IR, and (1)H NMR spectroscopy. Single-crystal X-ray analysis showed that chain structures form for all complexes in which the quinoline rings interact via various intra- (1) or intermolecular (2, 3, and 4) pi-pi aromatic stacking interactions, which in the latter cases results in multidimensional structures. Additional weak interactions, such as Ag.O and Ag.S contacts and C-H.O hydrogen bonding, are also present and help form stable, crystalline materials. It was found that the (CH(2))(n) spacers (n = 3 or 4) affect the orientation of the two terminal quinolyl rings, thereby significantly influencing the specific framework structure that forms. If the same ligand is used, on the other hand, then the different counteranions have the greatest effect on the final structure.  相似文献   

6.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

7.
Four new supramolecular compounds of Cu(II)-Ni(II) have been synthesized and characterized: [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(ClO(4))(2) (1), [Cu(Me(2)oxpn)Ni(mu-NCS)(H(2)O)(tmen)](2)(PF(6))(2) (2), [Cu(oxpn)Ni(mu-NCS)(NCS) (tmen)](n) (3), and [Cu(Me(2)oxpn)Ni(mu-NCS)(NCS)(tmen)](n) (4), where oxpn = N,N'-bis(3-aminopropyl)oxamidate, Me(2)oxpn = N,N'-bis(3-amino-2,2'-dimethylpropyl)oxamidate, and tmen = N,N,N',N'-tetramethylethylenediamine. Their crystal structures were solved. Complexes 1 and 2 have the same tetranuclear cationic part but a different counteranion. The cationic part consists of two [Cu(Me(2)oxpn)Ni] moieties linked by SCN(-) bridged ligands and intra-tetranuclear hydrogen bonds. In the case of complex 3, a two-dimensional system was built, the thiocyanate ligand linking the dinuclear units gives a chain, and the chains are linked together by hydrogen bonds; intrachain hydrogen bonds are also present. For complex 4, the thiocyanate ligands produce intermolecular linkages between the dinuclear entities, giving a one-dimensional system; intrachain hydrogen bonds are also present. The magnetic properties of the four complexes were studied by susceptibility measurements vs temperature. DFT calculations were made to study the contribution of the SCN(-) and hydrogen bond bridges in the magnetic coupling.  相似文献   

8.
Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe(2)bdpi, and HMe(4)bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)aminomethyl)imidazole, HMe(2)bdpi = 4,5-bis((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)aminomethyl)imidazole, HMe(4)bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)aminomethyl)imidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu,Zn-SOD). The corresponding mononucleating ligands, MeIm(Py)(2), MeIm(Me)(1), and MeIm(Me)(2) (MeIm(Py)(2) = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine, MeIm(Me)(1) = (1-methyl-4-imidazolylmethyl)(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, MeIm(Me)(2) = (1-methyl-4-imidazolyl-methyl)bis(6-methyl-2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)-Cu(II) homodinuclear complexes represented as [Cu(2)(bdpi)(CH(3)CN)(2)](ClO(4))(3).CH(3)CN.3H(2)O (1), [Cu(2)(Me(2)bdpi)(CH(3)CN)(2)](ClO(4))(3) (2), [Cu(2)(Me(4)bdpi)(H(2)O)(2)](ClO(4))(3).4H(2)O (3), a Cu(II)-Zn(II) heterodinuclear complex of the type of [CuZn(bdpi)(CH(3)CN)(2)](ClO(4))(3).2CH(3)CN (4), Cu(II) mononuclear complexes of [Cu(MeIm(Py)(2))(CH(3)CN)](ClO(4))(2).CH(3)CN (5), [Cu(MeIm(Me)(1))(CH(3)CN)](ClO(4))(2)( )()(6), and [Cu(MeIm(Me)(2))(CH(3)CN)](ClO(4))(2)( )()(7) have been synthesized and the structures of complexes 5-7 determined by X-ray crystallography. The complexes 1-7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazole nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH(3)CN or H(2)O) which can be readily replaced by a substrate. The reactions between complexes 1-7 and hydrogen peroxide (H(2)O(2)) in the presence of a base at -80 degrees C yield green solutions which exhibit intense bands at 360-380 nm, consistent with the generation of hydroperoxo Cu(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degrees C exhibit a strong resonance-enhanced Raman band at 834-851 cm(-1), which shifts to 788-803 cm(-1) (Deltanu = 46 cm(-1)) when (18)O-labeled H(2)O(2) was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm(-1) (in the case of H(2)(18)O(2), Deltanu = 46 cm(-1)), respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.  相似文献   

9.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   

10.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

11.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

12.
Three protonated forms of 7-methylguanine (7-MeGH, 1) with different counter ions, [7-MeGH(2)]X (X = NO(3), 1a; ClO(4), 1b; BF(4), 1c) and two Pt(II) complexes, trans-[Pt(NH(3))(2)(7-MeGH-N9)(2)](ClO(4))(2) (4) and trans-[Pt(NH(3))(2)(7-MeGH-N9)(7-MeGH-N3)](ClO(4))(2)·3H(2)O (5) are described and their X-ray crystal structures are reported. 1a-1c form infinite ribbons via pairs of intermolecular hydrogen bonds between N1H···O6 and N3···N2H(2) sites, with anions connecting individual ribbons, thereby generating extended sheets. 4 and 5 do not display unusual features, except that 5 represents a rare case of a bis(nucleobase) complex of Pt(II) in which linkage isomers occur. Unlike in a previously reported compound, [Pt(dien)(7-MeGH-N9)](NO(3))(ClO(4)), the Pt coordination planes and the 7-MeGH planes are not coplanar in 4 and 5. The hydrogen bonding behaviour of 7-MeGH, free and when platinated at N9 (complex 4), was studied in Me(2)SO-d(6). It revealed the following: (i) there is no detectable self-association of 1 in Me(2)SO solution. (ii) 1 and 1-methylcytosine (1-MeC) form Watson-Crick pairs. (iii) 4 does not self-associate. (iv) 4 associates with 1-MeC in the Watson-Crick fashion. (v) 4 and 1 interact in solution, but no model can be proposed at present. (vi) Remarkable interaction shifts between 4 and 1 occur when NH(3) is liberated from trans-(NH(3))(2)Pt(II) to give NH(4)(+) in Me(2)SO-d(6). Feasible models, which imply the presence of deprotonated 7-MeG(-) species are proposed. Finally, DFT calculations were carried out to qualitatively estimate the effect of 7-MeGH acidity in [Pt(dien)(7-MeGH-N9)](2+) in dependence of the dihedral angle between the Pt coordination plane and the nucleobase.  相似文献   

13.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

14.
One flexible, discrete coordination cage [Cu(2)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), and two cation-clusters with micro(2)-Cl bridging [Ni(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(3) () and [Co(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), containing the ferrocenyl functionality were prepared via coordination-driven self-assembly and Cl-anion template from Cu(II), Ni(II) and Co(II) salts and a flexible two-arm molecule 1,1-bis[(3-pyridylamino)carbonyl]ferrocene (3-BPFA).  相似文献   

15.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

16.
A series of novel tri- and pentanuclear complexes composed of dinuclear LM(2) units (M=Co, Ni, Zn; L=24-membered macrocyclic hexaazadithiophenolate ligand) and ferrocenecarboxylate ([CpFeC(5)H(4)CO(2)](-)) or 1,1'-ferrocenedicarboxylate ([Fe(C(5)H(4)CO(2))(2)](2-)) groups is reported. The complexes [LM(II) (2)(O(2)CC(5)H(4)FeCp)](+) (M=Co (6), Ni (7), Zn (8)) and [(LM(II) (2))(2)(O(2)CC(5)H(4))(2)Fe](2+) (M=Co (9), Ni (10)) have been prepared by substitution reactions from labile [LM(II) (2)L'](+) precursors (L'=Cl, OAc) and the respective ferrocenecarboxylate anions in methanol. Mixed-valent [(LCo(II)Co(III))(2)(O(2)CC(5)H(4))(2)Fe](4+) (11) was prepared by oxidation of 9 with bromine. Complexes 7[BPh(4)], 8[BPh(4)], 9[BPh(4)](2), 10[BPh(4)](2), and 11[ClO(4)](4) have been characterized by X-ray crystallography; showing that the ferrocenyl carboxylates act as bidentate (7, 8) or bis-bidentate (9-11) bridging ligands towards one or two bioctahedral LM(2) subunits, respectively. The structures are retained in solution as indicated by NMR spectroscopic studies on the diamagnetic Zn(2)Fe complex 8[ClO(4)]. Electrochemical studies reveal significant anodic potential shifts for the oxidation potential of the ferrocenyl moieties upon complexation and the magnitude of the potential shift appears to correlate with the charge of the LM(2) subunits. This is qualitatively explained in terms of destabilizing electrostatic (Coulomb) interactions between the M(2+) ions of the LM(2) unit and the proximate ferrocenium fragment. An analysis of the temperature-dependent magnetic susceptibility data for 10[BPh(4)](2) shows the presence of weak ferromagnetic magnetic exchange interactions between the Ni(II) ions in the LNi(2) units. The exchange coupling across the ferrocenedicarboxylate bridge is negligible.  相似文献   

17.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

18.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

19.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

20.
合成和表征了四种新的异三核配合物, {[Mn(L)2]2[Cu(bpa)]{(ClO4)2,其中pba表示为亚丙基-1, 3-双(草胺酸根); L表示1, 10-菲咯啉(phen)、5-硝基-1, 10-菲咯啉(NO2-phen)、2, 2'-联吡啶(bpy)、4, 4'-二甲基-2, 2'-联吡啶(Me2bpy)。基于{[Mn(phen)2]2[Cu(pba)]}(ClO4)2.H2O的变温磁化率测量(4.2~300K), 求出交换积分J=41.5cm^-^1, 表明Mn(Ⅱ)和Cu(Ⅱ)离子间为反铁磁耦合。在XMT-T图上, XMT在175K附近呈现出一极小值, 这是具有非正规自旋态结构的多金属耦合体系的典型特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号