首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal solutions of the restricted master problems typically leads to an unstable behavior of the standard column generation technique and, consequently, originates an unnecessarily large number of iterations of the method. To overcome this drawback, variations of the standard approach use interior points of the dual feasible set instead of optimal solutions. In this paper, we focus on a variation known as the primal–dual column generation technique which uses a primal–dual interior point method to obtain well-centered non-optimal solutions of the restricted master problems. We show that the method converges to an optimal solution of the master problem even though non-optimal solutions are used in the course of the procedure. Also, computational experiments are presented using linear-relaxed reformulations of three classical integer programming problems: the cutting stock problem, the vehicle routing problem with time windows, and the capacitated lot sizing problem with setup times. The numerical results indicate that the appropriate use of a primal–dual interior point method within the column generation technique contributes to a reduction of the number of iterations as well as the running times, on average. Furthermore, the results show that the larger the instance, the better the relative performance of the primal–dual column generation technique.  相似文献   

2.
We investigate solution of the maximum cut problem using a polyhedral cut and price approach. The dual of the well-known SDP relaxation of maxcut is formulated as a semi-infinite linear programming problem, which is solved within an interior point cutting plane algorithm in a dual setting; this constitutes the pricing (column generation) phase of the algorithm. Cutting planes based on the polyhedral theory of the maxcut problem are then added to the primal problem in order to improve the SDP relaxation; this is the cutting phase of the algorithm. We provide computational results, and compare these results with a standard SDP cutting plane scheme. Research supported in part by NSF grant numbers CCR–9901822 and DMS–0317323. Work done as part of the first authors Ph.D. dissertation at RPI.  相似文献   

3.
This paper presents a “standard form” variant of Karmarkar's algorithm for linear programming. The tecniques of using duality and cutting objective are combined in this variant to maintain polynomial-time complexity and to bypass the difficulties found in Karmarkar's original algorithm. The variant works with problems in standard form and simultaneously generates sequences of primal and dual feasible solutions whose objective function values converge to the unknown optimal value. Some computational results are also reported.  相似文献   

4.
We propose techniques for the solution of the LP relaxation and the Lagrangean dual in combinatorial optimization and nonlinear programming problems. Our techniques find the optimal solution value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual in polynomial time using as a subroutine either the Ellipsoid algorithm or the recent algorithm of Vaidya. Moreover, in problems of a certain structure our techniques find not only the optimal solution value, but the solution as well. Our techniques lead to significant improvements in the theoretical running time compared with previously known methods (interior point methods, Ellipsoid algorithm, Vaidya's algorithm). We use our method to the solution of the LP relaxation and the Langrangean dual of several classical combinatorial problems, like the traveling salesman problem, the vehicle routing problem, the Steiner tree problem, thek-connected problem, multicommodity flows, network design problems, network flow problems with side constraints, facility location problems,K-polymatroid intersection, multiple item capacitated lot sizing problem, and stochastic programming. In all these problems our techniques significantly improve the theoretical running time and yield the fastest way to solve them.  相似文献   

5.
In this paper we give a new convergence analysis of a projective scaling algorithm. We consider a long-step affine scaling algorithm applied to a homogeneous linear programming problem obtained from the original linear programming problem. This algorithm takes a fixed fraction λ≤2/3 of the way towards the boundary of the nonnegative orthant at each iteration. The iteration sequence for the original problem is obtained by pulling back the homogeneous iterates onto the original feasible region with a conical projection, which generates the same search direction as the original projective scaling algorithm at each iterate. The recent convergence results for the long-step affine scaling algorithm by the authors are applied to this algorithm to obtain some convergence results on the projective scaling algorithm. Specifically, we will show (i) polynomiality of the algorithm with complexities of O(nL) and O(n 2 L) iterations for λ<2/3 and λ=2/3, respectively; (ii) global covnergence of the algorithm when the optimal face is unbounded; (iii) convergence of the primal iterates to a relative interior point of the optimal face; (iv) convergence of the dual estimates to the analytic center of the dual optimal face; and (v) convergence of the reduction rate of the objective function value to 1−λ.  相似文献   

6.
We recently proposed several new pivot rules for achieving dual feasibility in linear programming, which are distinct from existing ones: the objective function value will no longer change necessarily monotonically in their solution process. In this paper, we report our further computational testing with one of them, the most-obtuse-angle rule. A two-phase dual simplex algorithm, in which the rule is used as a row selection rule for Phase-1, has been implemented in FORTRAN 77 modules, and was tested on a set of standard linear programming problems from NETLIB. We show that, if full pricing is applied, our code unambiguously will outperform MINOS 5.3, one of the best implementations of the simplex algorithm at present.  相似文献   

7.
The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra’s d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities). This research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant #12-34002.92, NSERC-Canada and FCAR-Quebec. This research was supported by an Obermann fellowship at the Center for Advanced Studies at the University of Iowa.  相似文献   

8.
In this paper we explore the relations between the standard dual problem of a convex generalized fractional programming problem and the partial dual problem proposed by Barros et al. (1994). Taking into account the similarities between these dual problems and using basic duality results we propose a new algorithm to directly solve the standard dual of a convex generalized fractional programming problem, and hence the original primal problem, if strong duality holds. This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to solve the partial dual problem. Although the convergence rates of both algorithms are similar, the new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a generalized linear fractional program. Moreover, the general duality results derived for the nonlinear case, yield an alternative way to derive the standard dual of a generalized linear fractional program. The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving the standard dual via the new algorithm is in most cases more efficient than applying directly the Dinkelbach-type algorithm to the original generalized fractional programming problem. However, the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general more efficient than solving the standard dual.This research was carried out at the Econometric Institute, Erasmus University Rotterdam, the Netherlands and was supported by the Tinbergen Institute Rotterdam  相似文献   

9.
Nonlinear clearing functions, an idea initially suggested to reflect congestion effects in production planning, are used to express throughput of facilities prone to congestion in a facility location problem where each demand site is served by exactly one facility. The traditional constant capacity constraint for a facility is replaced with the nonlinear clearing function. The resulting nonlinear integer problem is solved by a column generation heuristic in which initial columns for the restricted master problem are generated by known existing algorithms and additional columns by a previously developed dynamic programming algorithm. Computational experimentation in terms of dual gap and CPU time based on both randomly generated and published data sets show not only clear dominance of the column generation over a Lagrangian heuristic previously developed, but also the high quality of results from the suggested heuristic for large problems.  相似文献   

10.
11.
In this paper an algorithm is presented for solving the classical posynomial geometric programming dual pair of problems simultaneously. The approach is by means of a primal-dual infeasible algorithm developed simultaneously for (i) the dual geometric program after logarithmic transformation of its objective function, and (ii) its Lagrangian dual program. Under rather general assumptions, the mechanism defines a primal-dual infeasible path from a specially constructed, perturbed Karush-Kuhn-Tucker system.Subfeasible solutions, as described by Duffin in 1956, are generated for each program whose primal and dual objective function values converge to the respective primal and dual program values. The basic technique is one of a predictor-corrector type involving Newton’s method applied to the perturbed KKT system, coupled with effective techniques for choosing iterate directions and step lengths. We also discuss implementation issues and some sparse matrix factorizations that take advantage of the very special structure of the Hessian matrix of the logarithmically transformed dual objective function. Our computational results on 19 of the most challenging GP problems found in the literature are encouraging. The performance indicates that the algorithm is effective regardless of thedegree of difficulty, which is a generally accepted measure in geometric programming. Research supported in part by the University of Iowa Obermann Fellowship and by NSF Grant DDM-9207347.  相似文献   

12.
The affine-scaling modification of Karmarkar's algorithm is extended to solve problems with free variables. This extended primal algorithm is used to prove two important results. First the geometrically elegant feasibility algorithm proposed by Chandru and Kochar is the same algorithm as the one obtained by appending a single column of residuals to the constraint matrix. Second the dual algorithm as first described by Adler et al., is the same as the extended primal algorithm applied to the dual.  相似文献   

13.
This paper reports on a new algorithm for the Generalized Quadratic Assignment problem (GQAP). The GQAP describes a broad class of quadratic integer programming problems, wherein M pair-wise related entities are assigned to N destinations constrained by the destinations’ ability to accommodate them. This new algorithm is based on a Reformulation Linearization Technique (RLT) dual ascent procedure. Experimental results show that the runtime of this algorithm is as good or better than other known exact solution methods for problems as large as M=20 and N=15. Current address of P.M. Hahn: 2127 Tryon Street, Philadelphia, PA 19146-1228, USA.  相似文献   

14.
An implementation of Karmarkar's algorithm for linear programming   总被引:14,自引:0,他引:14  
This paper describes the implementation of power series dual affine scaling variants of Karmarkar's algorithm for linear programming. Based on a continuous version of Karmarkar's algorithm, two variants resulting from first and second order approximations of the continuous trajectory are implemented and tested. Linear programs are expressed in an inequality form, which allows for the inexact computation of the algorithm's direction of improvement, resulting in a significant computational advantage. Implementation issues particular to this family of algorithms, such as treatment of dense columns, are discussed. The code is tested on several standard linear programming problems and compares favorably with the simplex codeMinos 4.0.  相似文献   

15.
整数规划的布谷鸟算法   总被引:1,自引:0,他引:1  
布谷鸟搜索算法是一种新型的智能优化算法.本文采用截断取整的方法将基本布谷鸟搜索算法用于求解整数规划问题.通过对标准测试函数进行仿真实验并与粒子群算法进行比较,结果表明本文所提算法比粒子群算法拥有更好的性能和更强的全局寻优能力,可以作为一种实用方法用于求解整数规划问题.  相似文献   

16.
This paper presents constraint programming (CP) as a natural formalism for modelling problems, and as a flexible platform for solving them. CP has a range of techniques for handling constraints including several forms of propagation and tailored algorithms for global constraints. It also allows linear programming to be combined with propagation and novel and varied search techniques which can be easily expressed in CP. The paper describes how CP can be used to exploit linear programming within different kinds of hybrid algorithm. In particular it can enhance techniques such as Lagrangian relaxation, Benders decomposition and column generation.  相似文献   

17.
We present an approximation algorithm for solving large 0–1 integer programming problems whereA is 0–1 and whereb is integer. The method can be viewed as a dual coordinate search for solving the LP-relaxation, reformulated as an unconstrained nonlinear problem, and an approximation scheme working together with this method. The approximation scheme works by adjusting the costs as little as possible so that the new problem has an integer solution. The degree of approximation is determined by a parameter, and for different levels of approximation the resulting algorithm can be interpreted in terms of linear programming, dynamic programming, and as a greedy algorithm. The algorithm is used in the CARMEN system for airline crew scheduling used by several major airlines, and we show that the algorithm performs well for large set covering problems, in comparison to the CPLEX system, in terms of both time and quality. We also present results on some well known difficult set covering problems that have appeared in the literature.  相似文献   

18.
线性最优化广泛应用于经济与管理的各个领域.在线性规划问题的求解中,如果一个初始基本可行解没有直接给出,则常采用经典的两阶段法求解.对含有"≥"不等式约束的线性规划问题,讨论了第一阶段原有单纯形法和对偶单纯形法两种算法形式,并根据第一阶段问题的特点提出了改进的对偶单纯形枢轴准则.最后,通过大规模数值试验对两种算法进行计算比较,结果表明,改进后的对偶单纯形算法在计算效率上明显优于原有单纯形算法.  相似文献   

19.
This paper presents a decomposition algorithm for solving convex programming problems with separable structure. The algorithm is obtained through application of the alternating direction method of multipliers to the dual of the convex programming problem to be solved. In particular, the algorithm reduces to the ordinary method of multipliers when the problem is regarded as nonseparable. Under the assumption that both primal and dual problems have at least one solution and the solution set of the primal problem is bounded, global convergence of the algorithm is established.  相似文献   

20.
This paper reports an evolutionary meta-heuristic incorporating fuzzy evaluation for some large-scale set covering problems originating from the public transport industry. First, five factors characterized by fuzzy membership functions are aggregated to evaluate the structure and generally the goodness of a column. This evaluation function is incorporated into a refined greedy algorithm to make column selection in the process of constructing a solution. Secondly, a self-evolving algorithm is designed to guide the constructing heuristic to build an initial solution and then improve it. In each generation an unfit portion of the working solution is removed. Broken solutions are repaired by the constructing heuristic until stopping conditions are reached. Orthogonal experimental design is used to set the system parameters efficiently, by making a small number of trials. Computational results are presented and compared with a mathematical programming method and a GA-based heuristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号