首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Charge separation in “soft” nanoparticles composed of water molecules, as well as sodium and chlorine ions, is studied by computer simulation. The detailed model of intermolecular interactions that includes, in addition to Coulomb, exchange, and dispersion forces, many-particle polarization and covalent interactions, as well as the effect due to the transfer of excess ion charges and influence of ion field on molecular interactions, is constructed. Model potentials are calibrated using experimental data on the free energy and enthalpy of the addition of vapor molecules to the hydration shells of ions, as well as the data of quantum-chemical calculations for stable cluster configurations and the vibration frequency of interionic bonds. The allowance for many-particle interactions makes it possible to improve the agreement between experimental and quantum-chemical data by more than an order of magnitude. The disregard for many-particle interactions leads to the significant overestimation of cluster stability.  相似文献   

2.
The influence of many-particle interactions on the structure of Na+(H2O) n clusters at 298 K was studied by the Monte Carlo method. The interaction parameters were reproduced from the experimental data on the Gibbs energy of hydration in water vapor. The interaction of induced dipoles results in the displacement of part of molecules through large distances from the ion. Covalent interactions strengthen the bond with the first attached molecule and weaken bonds with the other molecules.  相似文献   

3.
The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.  相似文献   

4.
The simplest pair model of intermolecular interactions fails to reproduce known experimental free energy and entropy of hydration of H3O+ ions in water vapor. A fit to experiment is attained only when covalent bonds and nonpair interactions, which are of particular importance at contact distances from the ion, are taken into account. An interaction model was constructed, which allows the experimental free energies of cluster formation to be reproduced to fractions of k B T by the Monte-Carlo method. Numerical values of interaction parameters were obtained by fitting simulated results to refined experimental data.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 9, 2004, pp. 1409–1417.Original Russian Text Copyright © 2004 by Shevkunov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

5.
The Gibbs energy and equilibrium work of the formation of nuclei of the condensed phase on sodium ions are calculated on the molecular level by a Monte Carlo simulation using a detailed interaction model. The stationary rate of nucleation is estimated based on the data obtained. The presence of ionic impurities only substantially affects the rate of nucleation at strong vapor supersaturation. The nucleus losses its thermodynamic stability with an increase in the size of the nucleus and the barrier is formed depending on the work of formation on the size of the nucleus. An abrupt loss of stability is accompanied by pushing the ion off of the microdroplet surface and the restoration of the network of hydrogen bonds. The effect of pushing an ion to the surface of a cluster greatly depends on many-particle polarization interactions.  相似文献   

6.
The Monte Carlo method is used to calculate the free energy, entropy, and work of water cluster formation in the field of Na+Cl ion pairs. A detailed model is used that allows for polarization and covalent many-particle interactions, as well as the effects of ion charge reversal. The model is matched to the experimental data on the free energy of ion hydration and the results of the quantum-chemical calculations of stable configurations. The hydration leads to the cleavage of an ion pair in a molecular cluster after approximately ten water molecules are captured. As vapor molecules are added, the stable interion distance monotonically elongates. The low free energy barrier separating the dissociated and nondissociated states of the ion pair in an equilibrium cluster does not hinders the reversible spontaneous transitions between the states, which are responsible for strong fluctuations and the instability of the system. Unlike hydroxonium-containing ion pairs, the formation of long-lived metastable states of hydrated Na+Cl pairs is impossible.  相似文献   

7.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

8.
B3LYP method with the LANL2DZ basis for tin and aug-cc-pVDZ basis for carbon and hydrogen were used to obtain the equilibrium geometry of the main (with a positive charge on the tin) isomers in the C4H11Sn+ system and the transition states at their interconversion. As in the case of silicon and germanium, the cations of lighter elements of the 14th group, the most stable isomer is shown to be the tertiary ion, however, the energy of its complexes with ethane and propane is higher only by several kJ mol−1. Nevertheless, the formation of these complexes from the tertiary ion requires overcoming a rather high barrier (293 and 272 kJ mol−1, respectively). The barrier for isomerization of the secondary ion in the ethane complex is somewhat lower (222 kJ mol−1), but still is significantly greater than the energy gained at the appearance of the nucleogenic ion. The most probable transformation pathways of the nucleogenic stannylium ions are the formation of complexes with ethylene, which requires overcoming barriers of 130 and 117 kJ mol−1 for the tertiary and secondary ions, respectively.  相似文献   

9.
The adsorption of small molecules NO, NH3 and H2O on V2O5/TiO2 catalysts is studied with the semiempirical SCF MO method MSINDO as pre-stage for the selective catalytic reduction of NO. The mixed catalyst is represented by hydrogen-terminated cluster models. The local arrangement of the cluster atoms is in accordance with available experimental information. Partial relaxation of cluster atoms near the adsorption sites is taken into account. Calculated adsorption energies are compared with experimental literature data. Rapid convergence of computed properties with cluster size is observed. A possible reaction mechanism for the catalytic reduction of NO with NH3 and O2 is outlined.  相似文献   

10.
A detailed model of intermolecular interactions in water molecule clusters is developed that makes it possible to describe their disintegration to ions under conditions of finite temperatures by the stochastic simulation methods. In this model, the Hamiltonian in explicit form includes Coulomb, dispersion, exchange, and polarization interactions; many-particle covalent interactions and hydrogen bonds; the interaction of induced dipoles; charge transfers from ions to molecules; and the recombination of counterion charges, as well as the effect of an ion field on the unpaired interactions of molecules. The model is consistent with experimental data on the free energy and entropy of ion hydration in water vapors and the free energy of the hydration of a recombined ion pair.  相似文献   

11.
The corrected selectivity coefficients of the ion exchange H+-Na+ and H+-NH4 + on ion-exchange resins based on C-tetramethylcalix[4]resorcinarene were calculated from the experimental data obtained from studying ion-exchange equilibria. The preference of the ion-exchange resins for cations increases in the sequence: Na+ < NH4 + < < H+, and the ion-exchange resin based on (2-furyl)hydroxymethyltetramethylcalix[4]resorcinarene has a higher preference for ammonium cations. According to the results of microcalorimetric measurements, the exchange H+-Na+ on this ion-exchange resin is accompanied by the highest change in the differential enthalpy. It follows from the quantum-chemical calculations that the introduction of a (2-furyl)hydroxymethyl group into the structure of the polymer induces additional electrostatic interactions between an ammonium cation and an elementary unit of the ion-exchange resin.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2560–2563, December, 2004.  相似文献   

12.
A novel uranyl complex with dimeric lacunary polyoxoanion like open-mouthed clam, Na5[(A-α-SiW9O33H3)2K{UO2(H2O)}2], was prepared and characterized by elemental analysis, infrared and ultraviolet–visible spectroscopy and single crystal X-ray diffraction. In the anion, two A-α-SiW9O3410− groups share two terminal oxygen atoms Od′ derived from removal of three corner-shared W atoms from saturated α-Keggin anion, forming a dimeric anion with an open mouth in which potassium ion and uranyl ions are coordinated. Uranium atom adopts a pentagonal bipyramidal geometry. The coordinating anions are linked by sodium ions via coordination of terminal or bridging oxygen atoms, forming two-dimensional layer arrangement. Between the layers are the hydrogen bonds from which a supramolecular architecture is created. UV–VIS spectrum gives W–O and U–O charge transfer transitions at 230–265 and 432 nm, showing the change of geometry of the polyanion and weakening of the U–O bonds of the uranyl cation. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

13.
Gas-phase infrared photodissociation spectroscopy is reported for the microsolvated [Mn(ClO4)(H2O) n ]+ and [Mn2(ClO4)3(H2O) n ]+ complexes from n = 2 to 5. Electrosprayed ions are isolated in an ion-trap where they are photodissociated. The 2600–3800 cm−1 spectral region associated with the OH stretching mode is scanned with a relatively low-power infrared table-top laser, which is used in combination with a CO2 laser to enhance the photofragmentation yield of these strongly bound ions. Hydrogen bonding is evidenced by a relatively broad band red-shifted from the free OH region. Band assignment based on quantum chemical calculations suggest that there is formation of water—perchlorate hydrogen bond within the first coordination shell of high-spin Mn(II). Although the observed spectral features are also compatible with the formation of structures with double-acceptor water in the second shell, these structures are found relatively high in energy compared with structures with all water directly bound to manganese. Using the highly intense IR beam of the free electron laser CLIO in the 800–1700 cm−1, we were also able to characterize the coordination mode (η2) of perchlorate for two clusters. The comparison of experimental and calculated spectra suggests that the perchlorate Cl—O stretches are unexpectedly underestimated at the B3LYP level, while they are correctly described at the MP2 level allowing for spectral assignment.  相似文献   

14.
The reaction of the carbidocarbonyl cluster [Fe6C(CO)16]2− with ruthenium(IV) hydroxochloride Ru(OH)Cl3 was studied. At 90–100 °C, the reaction gave products of replacement of Fe atoms by Ru in the [Fe6C(CO)16]2− cluster along with degradation products. Treatment of the replacement products with FeCl3 afforded the [Fe2.96Ru3.04C(CO)17] compound (1), which was characterized by X-ray diffraction analysis. The crystals of cluster 1 are composed of two types of octahedral molecules (1a and 1b) in a ratio of 2 : 1. Molecules 1a are in general positions, and molecules 1b are located on twofold axes. In both molecules, the Fe and Ru atoms are disordered over four of six positions. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1761–1766, August, 2005.  相似文献   

15.
The electronic structure of the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex was calculated by the “hybrid” B3LYP method. Comparison of the experimental X-ray emission C-Kα spectrum and theoretical spectrum of the compound demonstrated that the electron interactions between the C60 core, palladium atom, and organometallic fragment are described correctly in the framework of the quantum chemical method used. The electronic structure of the organometallic fullerene complex can be presented as a set of blocks of orbitals corresponding to different types of chemical bond. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2640–2644, December, 2005.  相似文献   

16.
It was found earlier that under matrix-assisted laser desorption/ionization (MALDI) conditions several organic compounds which produce adduct with silver ions, are also capable of forming adducts with Ag(3)(+) cluster ions under appropriate conditions. The Ag(3)(+) cluster ion can be in situ generated under the MALDI analysis conditions from silver trifluoroacetate cationization agent in the presence of organic MALDI matrices. In this article the fragmentation of a commercial plasticizer, a peracetylated isoflavone glycoside and a pyrazolylphenyl disulfide derivative cationized with silver ions and Ag(3)(+) cluster ions are compared. It was observed that the complexes of Ag(3)(+) are less fragmented than the corresponding adduct ions with Ag(+). The presumable fragmentation channel of [M + Ag(3)(+)] is the elimination of Ag(2) units from these complexes. No significant dissociation of [M + Ag(3)(+)], into M and Ag(3)(+) takes place, indicating a tight connection between the corresponding molecule and Ag(3)(+) cluster ion. However, with a compound carrying very labile groups, such as the pyrazolylphenyl disulfide derivative, intramolecular cleavages can occur prior to significant dissociation of the Ag(3)(+) cluster ion.  相似文献   

17.
Direct analysis in real time (DART) mass spectrometry is a recently developed innovative technology, which has shown broad applications for fast and convenient analysis of complex samples. Due to the ease of sample preparation, we have recently initiated an investigation of the feasibility of detecting nucleotides and nucleosides using the DART-AccuTOF instrument, which we will refer to as the DART mass spectrometer. Our experimental results reveal that the ions representing the intact molecules of nucleotides are not detectable in either positive-ion or negative-ion mode. Instead, all four natural nucleotides fragment in the DART ion source, and a common fragment ion, [C5H5O]+ (1), is observed, which is probably formed via multiple-elimination reactions. Interestingly, 1 can form adducts with nucleobases in different molar ratios in the DART ion source. In contrast to nucleotides, the ions representing the intact molecules of nucleosides are detected in both positive-ion and negative-ion mode using DART mass spectrometry. Surprisingly, the fragmentation pattern of nucleosides is different from that of nucleotides in the DART ion source. In the cases of nucleosides (under positive-ion conditions), the production of 1 is not observed, indicating that the phosphate group plays an important role for the multiple eliminations observed in the spectra of nucleotides. The in-source reactions described in the present work show the complexity of the conditions in the DART ion source, and we hope that our results illustrate a better understanding about DART mass spectrometry.  相似文献   

18.
We accomplished a synthesis of the two-component vanadium-chromium containing monolayer on the silica surface by treating the latter with a mixture of CrO2Cl2 and VOCl3 vapors. Analysis of the chemical reactions on the substrate surface is carried out using quantum-chemical modeling. The calculated VOCl3 reactivity is higher than that of CrO2Cl2, which requires the use of an excess of the chromium oxychloride in the reaction mixture to provide a control over the coating composition in a wide range of concentrations. The quantitative forecast of the reaction product composition indicates a significant role of the synthesis temperature and structural strain at the formation of the monolayer. We carried out an experimental synthesis of the two-component coating by the method of molecular layering (ML) under the conditions derived from quantum-chemical predictions, at a concentration ratio of chromium and vanadium in the range from 0.5 to 2.6, and showed the ability of control over the product composition. Based on a comparison of experimental and calculated data the structural strains and the quantitative ratio of the surface centers of different local structure were estimated. The results obtained using infrared Fourier spectroscopy confirm the agreement between the experimental data and the quantum-chemical predictions.  相似文献   

19.
The literature data on the thermochemical characteristics of negative LnCl? 4 and Ln2Cl? 7 ions (from lanthanum to lutetium inclusive) in the gas phase are systematized. The enthalpies of ion-molecular and ion-ion reactions with the participation of these ions were calculated and used to determine the enthalpies of formation of the ions for the whole lanthanide series.  相似文献   

20.
The structure of the Bu4N+-dimethylformamide system in the condensed and gas phases was studied by molecular dynamics simulation and quantum-chemical calculations. The calculation results were used to reveal the role played by steric effects in the volumetric characteristics of ion solvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号