首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

2.
We prove that the class of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes is exactly the class of \(\mathbb {Z}_2\)-linear codes with automorphism group of even order. Using this characterization, we give examples of known codes, e.g. perfect codes, which have a nontrivial \(\mathbb {Z}_2\mathbb {Z}_2[u]\) structure. Moreover, we exhibit some examples of \(\mathbb {Z}_2\)-linear codes which are not \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear. Also, we state that the duality of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes is the same as the duality of \(\mathbb {Z}_2\)-linear codes. Finally, we prove that the class of \(\mathbb {Z}_2\mathbb {Z}_4\)-linear codes which are also \(\mathbb {Z}_2\)-linear is strictly contained in the class of \(\mathbb {Z}_2\mathbb {Z}_2[u]\)-linear codes.  相似文献   

3.
In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring \(R=\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}\), where \(v^{3}=v\), for q odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over R. Further, we give bounds on the minimum distance of LCD codes over \(\mathbb {F}_q\) and extend these to codes over R.  相似文献   

4.
We determine the possible homogeneous weights of regular projective two-weight codes over \(\mathbb {Z}_{2^k}\) of length \(n>3\), with dual Krotov distance \(d^{\lozenge }\) at least four. The determination of the weights is based on parameter restrictions for strongly regular graphs applied to the coset graph of the dual code. When \(k=2\), we characterize the parameters of such codes as those of the inverse Gray images of \(\mathbb {Z}_4\)-linear Hadamard codes, which have been characterized by their types by several authors.  相似文献   

5.
We study the structure of cyclic DNA codes of odd length over the finite commutative ring \(R=\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2 + v^2\mathbb {F}_2+uv^2\mathbb {F}_2,~u^2=0, v^3=v\), which plays an important role in genetics, bioengineering and DNA computing. A direct link between the elements of the ring R and 64 codons used in the amino acids of living organisms is established by introducing a Gray map from R to \(R_1=\mathbb {F}_2+u\mathbb {F}_2 ~(u^2=0)\). The reversible and the reversible-complement codes over R are investigated. We also discuss the binary image of the cyclic DNA codes over R. Among others, some examples of DNA codes obtained via Gray map are provided.  相似文献   

6.
Let \(\ell \) be a prime and let \(L/ \mathbb {Q}\) be a Galois number field with Galois group isomorphic to \( \mathbb {Z}/\ell \mathbb {Z}\). We show that the shape of L, see Definition 1.2, is either \(\frac{1}{2}\mathbb {A}_{\ell -1}\) or a fixed sub-lattice depending only on \(\ell \); such a dichotomy in the value of the shape only depends on the type of ramification of L. This work is motivated by a result of Bhargava and Shnidman, and a previous work of the first named author, on the shape of \( \mathbb {Z}/3 \mathbb {Z}\) number fields.  相似文献   

7.
In this paper, we define the simplex and MacDonald codes of types \(\alpha \) and \(\beta \) over \({\mathbb {Z}}_{2}{\mathbb {Z}}_{4}\). We also examine the covering radii of these codes. Further, we study the binary images of these codes and prove that the binary image of the simplex codes of type \(\alpha \) meets the Gilbert bound.  相似文献   

8.
Let \(\mathcal{C}\) be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive code of length \(n > 3\). We prove that if the binary Gray image of \(\mathcal{C}\) is a 1-perfect nonlinear code, then \(\mathcal{C}\) cannot be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic code except for one case of length \(n=15\). Moreover, we give a parity check matrix for this cyclic code. Adding an even parity check coordinate to a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive 1-perfect code gives a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive extended 1-perfect code. We also prove that such a code cannot be \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic.  相似文献   

9.
A binary linear code C is a \({\mathbb {Z}}_2\)-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the \({\mathbb {Z}}_2[x]\)-module \({\mathbb {Z}}_2[x]/(x^r-1)\times {\mathbb {Z}}_2[x]/(x^s-1).\) We determine the structure of \({\mathbb {Z}}_2\)-double cyclic codes giving the generator polynomials of these codes. We give the polynomial representation of \({\mathbb {Z}}_2\)-double cyclic codes and its duals, and the relations between the generator polynomials of these codes. Finally, we study the relations between \({{\mathbb {Z}}}_2\)-double cyclic and other families of cyclic codes, and show some examples of distance optimal \({\mathbb {Z}}_2\)-double cyclic codes.  相似文献   

10.
A classic result of Delsarte connects the strength (as orthogonal array) of a linear code with the minimum weight of its dual: the former is one less than the latter. Since the paper of Hammons et al., there is a lot of interest in codes over rings, especially in codes over \(\mathbb {Z}_{4}\) and their (usually non-linear) binary Gray map images. We show that Delsarte’s observation extends to codes over arbitrary finite commutative rings with identity. Also, we show that the strength of the Gray map image of a \(\mathbb {Z}_{4}\) code is one less than the minimum Lee weight of its Gray map image.  相似文献   

11.
We propose a polynomial time f-algorithm (a deterministic algorithm which uses an oracle for factoring univariate polynomials over \(\mathbb {F}_q\)) for computing an isomorphism (if there is any) of a finite-dimensional \(\mathbb {F}_q(x)\)-algebra \(\mathcal{A}\) given by structure constants with the algebra of n by n matrices with entries from \(\mathbb {F}_q(x)\). The method is based on computing a finite \(\mathbb {F}_q\)-subalgebra of \(\mathcal{A}\) which is the intersection of a maximal \(\mathbb {F}_q[x]\)-order and a maximal R-order, where R is the subring of \(\mathbb {F}_q(x)\) consisting of fractions of polynomials with denominator having degree not less than that of the numerator.  相似文献   

12.
We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).  相似文献   

13.
Let R be a commutative ring with \(1\in R\) and \(R^{*}\) be the multiplicative group of its units. In 1969, Nagell introduced the concept of an exceptional unit, namely a unit u such that \(1-u\) is also a unit. Let \({\mathbb {Z}}_n\) be the ring of residue classes modulo n. In this paper, given an integer \(k\ge 2\), we obtain an exact formula for the number of ways to represent each element of \( \mathbb {Z}_n\) as the sum of k exceptional units. This generalizes a recent result of J. W. Sander for the case \(k=2\).  相似文献   

14.
We study the differential uniformity of a class of permutations over \(\mathbb{F}_{2^n } \) with n even. These permutations are different from the inverse function as the values x?1 are modified to be (γx)? on some cosets of a fixed subgroup 〈γ〉 of \(\mathbb{F}_{2^n }^* \). We obtain some sufficient conditions for this kind of permutations to be differentially 4-uniform, which enable us to construct a new family of differentially 4-uniform permutations that contains many new Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) classes as checked by Magma for small numbers n. Moreover, all of the newly constructed functions are proved to possess optimal algebraic degree and relatively high nonlinearity.  相似文献   

15.
Let X be a zero-dimensional space and Y be a Tychonoff space. We show that every non-zero ring homomorphism \(\Phi :C(X,\mathbb {Z})\rightarrow C(Y)\) can be induced by a continuous function \(\pi :Y\rightarrow \upsilon _0X.\) Using this, it turns out that the kernel of such homomorphisms is equal to the intersection of some family of minimal prime ideals in \({{\mathrm{MinMax}}}\left( C(X,\mathbb {Z})\right) .\) As a consequence, we are able to obtain the fact that the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is a subring of some ring of continuous functions if and only if each infinite subset of isolated points of X has a limit point in \(\upsilon _0X.\) This implies that for an arbitrary infinite set X,  the factor ring \(\frac{\prod _{_{x\in X}}\mathbb {Z}_{_{x}}}{\oplus _{_{x\in X}}\mathbb {Z}_{_{x}}}\) is not embedded in any ring of continuous functions. The classical ring of quotients of the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is fully characterized. Finally, it is shown that the factor ring \(\frac{C(X,\mathbb {Z})}{C_F(X,\mathbb {Z})}\) is an I-ring if and only if each infinite subset of isolated points on X has a limit point in \(\upsilon _0X\) and \(\upsilon _0X{\setminus }\mathbb {I}(X)\) is an extremally disconnected \(C_{\mathbb {Z}}\)-subspace of \(\upsilon _0X,\) where \(\mathbb {I}(X)\) is the set of all isolated points of X.  相似文献   

16.
We construct two series of linear codes C(G) over \(\mathbb {F}_{q}[x]/(x^2)\) and \(GR(p^2,m)\) reaching the Griesmer bound. Moreover, we consider the Gray images of C(G). The results show that the Gray images of C(G) over \(\mathbb {F}_{q}[x]/(x^2)\) are linear and also reach the Griesmer bound in some cases, and many of linear codes over \(\mathbb {F}_{q}\) we constructed have two Hamming (non-zero) weights.  相似文献   

17.
In this paper we study the difference between the 2-adic valuations of the cardinalities \( \# E( \mathbb {F}_{q^k} ) \) and \( \# E( \mathbb {F}_q ) \) of an elliptic curve E over \( \mathbb {F}_q \). We also deduce information about the structure of the 2-Sylow subgroup \( E[ 2^\infty ]( \mathbb {F}_{q^k} ) \) from the exponents of \( E[ 2^\infty ]( \mathbb {F}_q ) \).  相似文献   

18.
This paper extends, in a sharp way, the famous Efimov’s Theorem to immersed ends in \(\mathbb {R}^3\). More precisely, let M be a non-compact connected surface with compact boundary. Then there is no complete isometric immersion of M into \(\mathbb {R}^3\) satisfying that \(\int _M |K|=+\infty \) and \(K\le -\kappa <0\), where \(\kappa \) is a positive constant and K is the Gaussian curvature of M. In particular Efimov’s Theorem holds for complete Hadamard immersed surfaces, whose Gaussian curvature K is bounded away from zero outside a compact set.  相似文献   

19.
We denote by \(\mathcal {H}_{d,g,r}\) the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \(\mathbb {P}^r\). In this note, we show that any non-empty \(\mathcal {H}_{g+2,g,4}\) is irreducible, generically smooth, and has the expected dimension \(4g+11\) without any restriction on the genus g. Our result augments the irreducibility result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, 2006), in which several low genus \(g\le 10\) cases have been left untreated.  相似文献   

20.
We study odd and even \(\mathbb{Z }_2\mathbb{Z }_4\) formally self-dual codes. The images of these codes are binary codes whose weight enumerators are that of a formally self-dual code but may not be linear. Three constructions are given for formally self-dual codes and existence theorems are given for codes of each type defined in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号