首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Liquid chromatography–inductively coupled plasma-mass spectrometry (LC–ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.  相似文献   

2.
Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, l-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5–10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l 1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5–10 μg l 1.Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l 1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l 1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l 1 for As(III) and 0.3 μg l 1 for the other three As species and precision is within 4–8% RSDs.Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l 1 (as As) and RSDs were 2–6%, 5–9%, 3–7% and 2–5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As(III), arsenite, has been confirmed as major arsenic species.  相似文献   

3.
The object of this work is to develop a simple and selective method for efficient extraction of Au(III) ions in aqueous solution using a new solid-phase extraction sorbent. Polyethylenimine (PEI) ion-exchange polymer was coated on alumina in the presence of NaNO3. The method is based on sorption of Au3+ ions on 50 mg PEI/Al2O3. A solution of 0.5 M thiourea, then 1.0 M HCl effectively eluted the gold ion and then aspirated into flame atomic absorption spectroscopy (FAAS). The influence of flow rate of sample solution and eluent, the pH effect, eluent type and sorption capacity was investigated. The effects of various diverse ions for preconcentration and separation of the gold ion were investigated. Relative standard deviation of 4.0 μg mL−1 of gold was 1.46% (n = 10). The detection limit was 26.2 ng L−1 in original solution. The method has been applied successfully for the recovery of trace amount of Au(III) ions from water samples.  相似文献   

4.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

5.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

6.
Sorption recovery of toxic ions – chromium (VI) and manganese (II) – from aqueous solutions with different acidity (0.001–0.5 M HCl) was investigated on cation and anion exchangers synthesized with long-chained cross-linking agents (LCA). The initial concentrations of Cr(VI) and Mn(II) were 1 g/L and 5 g/L, respectively. It was shown that the resins with LCA possess high ionic permeability due to the elasticity of polymeric skeleton. High selectivity and good kinetic properties of these sorbents allowed to achieve quantitative (∼100%) recovery and separation of manganese (II) and chromium (VI) in counter-current columns, which results in the complete purification of solutions from toxicants (below the maximum permissible limits), whereas the valuable components (chromium and manganese) can be returned back to industrial process.  相似文献   

7.
The presence of salts can significantly alter the (liquid + liquid) equilibrium and extraction process. In this work, a study was conducted on the (liquid + liquid) equilibria of (water + acetic acid + toluene + sodium chloride or potassium chloride) at temperatures (288.2, 298.2 and 313.2) K. This chemical system, irrespective of salt, is frequently used in (liquid + liquid) extraction investigations. The selected salt concentrations in initial aqueous solutions were (0.9 and 1.7) mol · L−1. The results show that salting-out effect of the salts was significant, so that an enhancement in the acetic acid distribution coefficient was achieved within (15.6 to 66.8)% with NaCl and within (2.5 to 37.6)% with KCl. Meantime, high separation factors were found at low temperatures and low solute concentrations. The electrolyte-NRTL model was satisfactorily used to correlate the phase equilibria. In this regard for each salt, the temperature dependent binary interaction parameters between components were calculated. The predicted tie-line mole fractions give root-mean square deviation (RMSD) values of only 0.0038 and 0.0045 for the systems containing NaCl and KCl, respectively.  相似文献   

8.
In the present study an easy micellar precipitation process at ambient temperature using cationic surfactant cetyl-trimethyl ammonium bromide (CTAB) was applied to the simultaneous extraction of cadmium, cobalt and nickel from aqueous samples. The analytical procedure involved the complex formation of these cations with 1,8-dihydroxyanthrone as a chelating agent in buffer media of pH 7.0. After the phase separation, the precipitated complexes were first dissolved in 0.25 mL of 80:20 propanol–water mixture containing 0.03 mL HNO3 and then subjected to the inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The concentration of 1,8-dihydroxyanthrone, pH, amount of CTAB and centrifuge time was optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 11.6, 9.5 and 14.4 with detection limits of 0.008, 0.009 and 0.004 (ng mL? 1) were obtained for Cd, Co and Ni respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed extraction method was successfully applied to the determination of these elements in various water and geological CRM samples with recovery percentages of 97–104% and RSD values of 1.87–2.36%.  相似文献   

9.
Special attention has been given to the separation and recovery of VII-group elements, Tc and Re, in relation to the partitioning of high-level liquid waste (HLLW) generated from the nuclear fuel reprocessing process. In this study, a tertiary amine (tri-n-octylamine, TOA), which is effective for the extraction of oxoanions, was encapsulated in Ca and H-types of alginate xerogel polymers (CaALG, HALG). The uptake behaviors of TcO4-and ReO4 (substitute of Tc) in the presence of HNO3 were examined by batch method using TOA-xerogel microcapsules (TOA-CaALG, TOA-HALG). The uptake of TcO4- in the presence of 0.1 M HNO3 was readily attained within 5 h, and a relatively large uptake(%) above 90% was obtained. The uptake(%) of Re(VII) for TOA-CaALG in the presence of 0.01∼0.1 M HNO3 was estimated to be about 90%, while gradually decreasing with HNO3 concentration, indicating that the extraction of HNO3 with TOA became dominant in this process: R3NH+NO3 (o) + ReO4 (aq) ↔ R3NH+ReO4 (o) + NO3 (aq). The order of the uptake(%) for different oxoanions in the presence of 0.01∼5 M HNO3 was Re(VII) > Zr(IV)> Se(VI) > Mo(VI) > Te(VI). The elution study of Tc(VII) revealed 95% and 99% of recovery with 5 M and 7 M HNO3, respectively. The chromatographic separation of Re(VII) from simulated HLLW (28 components of waste solution, SW-11E, JAEA) as well as from mixed solution was accomplished by the stepwise elution techniques using a column packed with TOA-MCs. The Re(VII) ions were effectively eluted with 5 M HNO3, and a relatively large recovery(%) of 98.60% was obtained. Other elements were eluted with H2O and 2 M HNO3. Thus the TOA-xerogel microcapsules are effective for the selective separation of Tc(VII) from HLLW.  相似文献   

10.
《Microchemical Journal》2008,88(2):163-169
This paper reports method development and validation work to determine highly polar bases, catecholamine compounds, using weak cation-exchange liquid chromatography of low ionic strength mobile phase with electrospray tandem mass spectrometry. Catecholamine compounds, such as epinephrine and norepinephrine, well-known biomarkers to diagnose hypertension disease, spiked in saline solutions are purified with solid phase extraction (SPE) using alumina powders. The extracts are loaded into a weak cation-exchange liquid chromatographic column via an injection loop and analyzed with electrospray-mass spectrometer. The de-salted extracts contain only small amounts of electrolytes to avoid saturating weak cation-exchange sites in the stationary phase with sodium ions. Using carefully selected mobile-phase solvents with optimized compositions (acetonitrile and water 10:90 v/v) and with dilute acid additives (acetic acid 0.1% v/v), we are able to elute catecholamine at sufficient retention times to avoid co-elution of saline matrix residues while maintaining adequate electrospray ionization efficiency of these compounds. Using epinephrine and norepinephrine standards, these methods are validated at the range of 5 to 500 ng mL 1. The measurement accuracy and precision of using epinephrine standards are within 12% and 5.3% respectively, whereas the accuracy and precision are within 6.0% and 4.2% respectively using epinephrine standards.The detection limits of epinephrine and norepinephrine are 0.10 ng mL 1 and 0.45 ng mL 1 respectively. The recovery percentages of our solid phase extraction methods using alumina powders are higher than 74%. When the validated calibration curves are used to determine epinephrine and norepinephrine in rat blood dialysates, the determination errors of accuracy and precision are both within 4%, while the determination errors are within 3% in rat blood plasma samples.  相似文献   

11.
Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H2 miniaturized flame after sodium borohydride reduction to Hg0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H2 microflame was investigated.The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10? 5 mol L? 1), thus allowing the organic/inorganic mercury speciation.The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L? 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L? 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection-chemical vapor generation atomic fluorescence spectrometry method was validated by analyzing the TORT-1 certificate reference material, which contains only monomethylmercury, and obtaining 83 ± 5% of monomethylmercury recovered, respectively. This method was also applied to the determination of monomethylmercury in saliva samples.  相似文献   

12.
Ribose at the 3′-end of oligonucleotides (oligos) selectively modified by Os(VI)2,2′-bipyridine (bipy) produced two CV redox couples at pyrolytic graphite electrode. Using square wave voltammetry (SWV) 22-mer oligos can be detected down to 250 nM. At mercury electrodes the Os(VI)bipy-oligo adducts produced an electrocatalytic peak at ~?1.2 V allowing their determination down to picomolar concentrations. High specificity of Os(VI)bipy for ribose in nucleic acids and high sensitivity of the determination at mercury and solid amalgam electrodes give promise for new efficient methods of microRNA determination.  相似文献   

13.
Low plutonium content acidic waste is generated in nuclear chemical facilities. Study was initiated to develop hollow fiber supported liquid membrane (HFSLM) technique for quantitative separation and recovery of plutonium (Pu) from such wastes using tri-n-butyle phosphate (TBP) in dodecane as carrier. Hollow fiber test module was fabricated using 20 lumens of 33.91 cm2 surface area and 9 cm length. After satisfactory testing of the hydrodynamic condition of the module, it was operated at a flow rate of 3 ml min−1 on recycling mode with acidic waste solution containing Pu=8 mg dm−3, uranium=15 dm−3, gross β=49.33 mCi dm−3, gross γ=15.73 mCi dm−3 and acidity 3 M HNO3. In presence of various fission products, selective permeation of Pu(IV) through the bundle of hollow fiber test module was observed to be more than 90% into a stripping phase consisting 0.1 M NH2OH·HCl in 0.3 M HNO3. A model is presented to describe the transport mechanism and to evaluate the mass transfer coefficient. The radiation stability was also tested by exposing the membrane upto irradiation level of 1 M rad. Potentiality of the method for the selective separation of plutonium from acidic waste is, thus, clearly seen.  相似文献   

14.
A simple and rapid technique based on salting out assisted solvent extraction was developed for extraction of atorvastatin from serum sample and high performance liquid chromatography–UV was used for its detection. In the present study, 1.0 mL serum was extracted by 0.5 mL of acetonitrile and some parameters that can affect extraction such as type and volume of extraction solvent, type of salt, and pH were optimized. Under optimized experimental conditions, the calibration curve was found to be linear in the range of 0.001–10 ng mL−1 in human serum and the correlation coefficient (R2) and the limits of detection were >0.99 and 0.0005 ng mL−1, respectively. The accuracy of the method in terms of average recovery of the compound in spiked serum and water samples was better than 90%.  相似文献   

15.
The present paper proposes an on-line pre-concentration system for cadmium determination in drinking water using flame atomic absorption spectrometry (FAAS). Cadmium(II) ions are retained as 1-(2-pyridylazo)-2-naphthol (PAN) complex at the walls of a knotted reactor, followed of elution using hydrochloric acid solution. The optimization was performed in two steps using factorial design for preliminary evaluation and a Box–Behnken design for determination of the critical experimental conditions. The variables involved were: sampling flow-rate, reagent concentration, pH and buffer concentration, and as response the analytical signal (absorbance). The validation process was performed considering the parameters: linearity and other characteristics of the calibration curve, analytical features of on-line pre-concentration system, precision, effect of other ions in the pre-concentration system and accuracy. Using the optimized experimental conditions, the procedure allows cadmium determination with a detection limit (3 σ / S) of 0.10 μg L 1, a quantification limit (10 σ / S) of 0.33 μg L−1, and a precision, calculated as relative standard deviation (RSD) of 2.7% (n = 7) and 2.4% (n = 7) for cadmium concentrations of 5 and 25 μg L 1, respectively. A pre-concentration factor of 18 and a sampling frequency of 48 h−1 were obtained. The recovery for cadmium in the presence of several ions demonstrated that this procedure could be applied for the analysis of water samples. The method was applied for cadmium determination in drinking water samples collected in Salvador City, Brazil. The cadmium concentrations found in five samples were lower than the maximum permissible levels established by the World Health Organization.  相似文献   

16.
High accuracy procedures for the determination of arsenic are needed for assigning reference values to certified reference materials (CRMs). There are a number of problems associated with the determination of total arsenic by inductively coupled plasma–mass spectrometry. Arsenobetaine (AsB) (the major species in fish) gives an enhanced response (9%) when compared to inorganic arsenic(V) and is very difficult to decompose. Chloride causes interference at m/z 75 by the formation of ArCl+ and chloride levels can be significant in marine fish. Also residual carbon in digests can lead to enhancement of arsenic signals by charge transfer effects. This can easily lead to erroneous quantification when compared to standards that do not contain carbon.This newly developed procedure overcomes these issues by complete mineralisation of the matrix leaving insignificant amounts of residual carbon and by removal of chlorine by evaporation. A detection limit of 30 ng/g was achieved. Recoveries for the following CRMs: DORM 2 100.1 ± 4.3%, SRM1548 96.1 ± 4.6%, BCR 422 103.6 ± 6.2% and SRM2976 105.9 ± 6.2% were obtained. The digestion procedure uses open vessel wet digestion with a mixture of sulfuric and nitric acid held at 300 °C. The decomposition of AsB was confirmed by speciation analysis of the digest. Carbon (m/z 13) was monitored to demonstrate the efficiency of the digestion. Instrumentation for the reduction of ArCl+ interference was not required and this view is supported by the recovery data. Measurements were performed by external calibration using tellurium as an internal standard.  相似文献   

17.
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min 1 sample loading rate. The detection limit was 0.2 ng L 1 and much lower than that of conventional method (around 15.8 ng L 1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L 1 of Hg and the linear working curve is from 20 to 2000 ng L 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.  相似文献   

18.
In order to obtain both enantiomers of aliphatic secondary alcohols via a greener method, the four-step resolution–separation process involving lipase-catalyzed enantioselective esterification and hydrolysis as well as two separation procedures both via heterogeneous azeotropic distillation was developed. (S)-2-Pentanol (ee = 98.6%), (R)-2-pentanol (ee >99%), (S)-2-octanol (ee = 98.2%), and (R)-2-octanol (ee = 98.5%) were all produced in high purity (>98%) and high yield (>90%). In addition to the two model substrates, this method could also be applied to the resolution of other aliphatic secondary alcohols.  相似文献   

19.
A new analytical method that uses high performance liquid chromatography–diode array detector (HPLC–DAD) was developed for the analysis of 14 benzimidazoles residues, including metabolites, in bovine liver. Samples were extracted using two different extraction procedures: with phosphate buffer after enzymatic hydrolysis (method A) or using organic solvent, i.e. acetonitrile (method B). Then, samples were purified on a strong cation exchange (SCX) cartridge and analyzed in HPLC/DAD. The recovery percentages, obtained spiking the matrix (liver) at concentrations of 500 and 100 μg kg?1 with a standard mixture of benzimidazoles, were in the range 6–101% and 80–102% for methods A and B, respectively. The repeatability of the methods was assessed in all cases by the % of correlation value (CV) that was lower than 19%. The limits of quantification (LOQs) in the matrix for methods A and B were in the range 40–60 and 20–50 μg kg?1, respectively. The best of the two methods, method B, was used for the analysis of 10 bovine liver samples.  相似文献   

20.
The extraction of Cu2+ ions from sulfate solutions across a hollow-fiber membrane containing LIX64N carriers dissolved in kerosene has been studied, in which Cu(II) was then back-extracted to a stripping-phase containing HCl. Experiments were conducted as a function of the initial feed concentration of Cu2+ (1–10 mol/m3), feed pH (2–6), the carrier concentration (0.1–0.4 mol/dm3), and stripping acidity (0.4–4 mol/dm3). A mass-transfer model was developed to predict the extent of Cu2+ extraction from aqueous feed in hollow-fiber contactors. The calculated time profiles of Cu2+ concentrations were in reasonable agreement with the experimental data (average standard deviation 9% in both extraction and back-extraction modules). The rate-controlling step(s) of such dispersion-free extraction processes were identified. It was shown that the extraction was governed by combined interfacial reaction and aqueous diffusion under the ranges studied, whereas the back-extraction was limited by combined membrane diffusion and aqueous diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号