首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
硝基甲烷是最简单的硝基化合物,同时也是一种高能物质,在工业上有着重要的作用。对于硝基甲烷形成亚硝酸甲酯的光反应,不同的实验研究得到了不同的结论。  相似文献   

3.
The performance of ab initio calculations for the ground and excited states of the Pt(saloph) complex is examined in detail. The S0–Si and T1–Ti absorption spectra are calculated, and the transition between the ground S0 state and the excited S1 state involves the HOMO-2, HOMO-1, HOMO and LUMO. Moreover, calculations show that the emissive singlet is of mixed MLCT/LLCT characteristic. On the other hand, the molecular geometry of the complex is nearly planar in the ground state while the geometry is obviously nonplanar in the excited state of S1(π, π*) in the gas phase.  相似文献   

4.
用从头算和MP2方法求得亚硝酸甲酯的基态、第一和第二激发态解离为CH3O和NO自由基的解离能分別为238.14、68.99和-183.97kJ/mol,而CH3O和NO易于生成甲醛和硝酰。由CI方法求出的亚硝酸甲酯直接生成甲醛和硝酰的基态和激发态反应曲线表明,该反应难以按这种机理进行。因此,以上计算支持了实验提出的亚硝酸甲酯光反应生成甲醛和硝酰的两种机理中的光解离机制。  相似文献   

5.
The excited electronic states of the p-coumaric acid thio-ester chromophore of the Photoactive Yellow Protein (PYP) are characterized in view of identifying the key factors determining the chromophore's isomerisation. These factors include the anionic nature of the chromophore, the presence of sulfur (rather than oxygen or nitrogen) in the ester moiety, and the presence of a hydrogen-bonding environment stabilizing the phenolate moiety. Two twisted stationary S1 structures are identified, corresponding to a twist around the double bond conjugated with the aromatic ring, and the single bond adjacent to the ring, respectively. The latter structure is accessed directly by relaxation from the Franck–Condon (FC) geometry. These structures are shown to entail a substantial polarization effect (increasing charge separation when moving towards the twisted geometry). Further, an inversion of charge character is observed for the double-bond twisted minimum, which can be accounted for by the vicinity of an S1–S0 conical intersection. The S1–S0 gap at the minimum geometries depends in a sensitive fashion on the -carbonyl heteroatom. Based upon these observations for the intrinsic properties of the chromophore, we further address the effect of the Arg52 residue, which acts as a counter-ion in the native protein environment.  相似文献   

6.
CASPT2//CASSCF/6-31G photochemical reaction path computations for two 4-cis-nona-2,4,6,8-tetraeniminium cation derivatives, with the 4-cis double bond embedded in a seven- and eight-member ring, are carried out to model the reactivity of the corresponding ring-locked retinal chromophores. The comparison of the excited state branches of the two reaction paths with that of the native chromophore, is used to unveil the factors responsible for the remarkably short (60 fs) excited state (S(1)) lifetime observed when an artificial rhodopsin containing an eight member ring-locked retinal is photoexcited. Indeed, it is shown that the strain imposed by the eight-member ring on the chromophore backbone leads to a dramatic change in the shape of the S(1) energy surface. Our models are also used to investigate the nature of the primary photoproducts observed in different artificial rhodopsins. It is seen that only the eight member ring-locked retinal model can access a shallow energy minimum on the ground state. This result implies that the primary, photorhodopsin-like, transient observed in artificial rhodopsins could correspond to a shallow excited state minimum. Similarly, the second, bathorhodopsin-like, transient species could be assigned to a ground state structure displaying a nearly all-trans conformation.  相似文献   

7.
Three isomeric 7-(pyridyl)indoles reveal very different, solvent-dependent photophysical properties. Due to rapid excited state depopulation involving intramolecular hydrogen bonding, 7-(2′-pyridyl)indole is practically nonfluorescent at room temperature. In nonpolar and polar aprotic solvents, 7-(3′-pyridyl)indole and 7-(4′-pyridyl)indole fluorescence strongly, but the emission is quenched in alcohols. Syn and anti rotameric forms of 7-(3′-pyridyl)indole are detected, each quenched to a different degree. This differential quenching is interpreted as evidence of enhanced S1 → S0 internal conversion being more efficient in cyclic solvates, with alcohol molecules forming a bridge between the proton donor and acceptor groups of an excited chromophore.  相似文献   

8.
硫代嘧啶碱基是光动力疗法潜在的重要光敏剂,其最低单重激发态的光物理研究已有广泛报道。然而,其较高激发态的跃迁性质和反应动力学研究较为稀少。因此,本文采用共振拉曼光谱和密度泛函理论计算方法研究2,4-二硫代尿嘧啶的紫外光谱和几个较高单重激发态的短时结构动力学。首先,基于共振拉曼光谱强度与电子吸收带振子强度f的关系,将紫外光谱去卷积成四个吸收带,分别为358 nm(f=0.0336)中等强度吸收带(A带),338 nm(f=0.1491)、301 nm(f=0.1795)和278 nm(f=0.3532)强而宽的吸收带(B、C和D带)。这一结果既吻合密度泛函理论计算结果,又符合共振拉曼光谱强度模式对紫外光谱带的预期。据此,去卷积得到的四个吸收带被分别指认为S0→S2跃迁、S0→S6跃迁、S0→S7跃迁和S_0→S_8跃迁。同时,分别对B,C和D带共振拉曼光谱进行了详细的指认,获得了短时动力学信息。结果表明,S_8态短时动力学的显著特征是在Franck-Condon区域或附近发生了S8(ππ~*)/S(nπ~*)势能面交叉引发的、伴随超快结构扭转的非绝热过程。S7和S6态短时动力学的主要特征是反应坐标的多维性,它们分别沿C_5C_6/C_2S_8/C_4S_(10)/N_2C_3+C_4N_3H_9/N_1C_2N_3/C_2N_1C_6/C_6N_1H_7/C_5C_6H_(12)和C_5C_6/N_3C_2/C_4S_(10)/C_2S_8+C_6N_1H_7/C_5C_6H_(12)/C_5C_6N_1/C_5C_6H_(12)/C_2N_1C_6/N_1C_2N_3/C_4N_3H_9/N_1C_2N_3等内坐标演化。  相似文献   

9.
In the group-6 metal hexacarbonyls a number of metal-to-ligand charge-transfer (MLCT) and ligand-field (LF or d → d) states can be excited in the near UV. The latter are repulsive. In equilibrium geometry, most of them are higher than the MLCT states. We probed the dynamics of photodissociation of M(CO)6 → M(CO)5 + CO (M = Cr; some data also for M = Mo) with improved time resolution (10–40 fs), pumping at different wavelengths (mainly 270–345 nm) and probing by nonresonant photoionization. The initial relaxation (e.g. within 12.5 fs from T1u excited at 270 nm) is assigned to direct crossing over to the repulsive surface, from where the subsequent dissociation is also remarkably fast (18 fs in this example). That is, there is no detour via the lowest excited singlet state, in contrast to the usual assumption. Also with 318 and 345 nm excitation a direct MLCT → LF relaxation seems to occur before dissociation. The product M(CO)5 is generated in the S1 state, also at pump wavelengths (345 nm) with barely sufficient energy. It relaxes to S0 through a Jahn–Teller induced conical intersection along pseudorotation coordinates, which stimulates a coherent oscillation in S0 in this vibration. A higher-frequency oscillation, assigned to totally symmetric MC stretch vibrations, is already found in the Franck–Condon region; it persists (with different wavenumbers) also during dissociation and over the subsequent product states. This vibration is transverse to the valley of dissociation, which is barrierless. The wavelength-independent mechanism also implies that there is no triplet contribution (which was previously supposed at long wavelengths) to photochemical dissociation of the hexacarbonyls.  相似文献   

10.
CASPT2//CASSCF photoisomerization path computations have been used to unveil the effects of an acetate counterion on the photochemistry of two retinal protonated Schiff base (PSB) models: the 2-cis-penta-2,4-dieniminium and the all-trans-epta-2,4,6-trieniminium cations. Different positions/orientations of the counterion have been investigated and related to (i) the spectral tuning and relative stability of the S0, S1, and S2 singlet states; (ii) the selection of the photochemically relevant excited state; (iii) the control of the radiationless decay and photoisomerization rates; and, finally, (iv) the control of the photoisomerization stereospecificity. A rationale for the results is given on the basis of a simple (electrostatic) qualitative model. We show that the model readily explains the computational results providing a qualitative explanation for different aspects of the experimentally observed "environment" dependent PSB photochemistry. Electrostatic effects likely involved in controlling retinal photoisomerization stereoselectivity in the protein are also discussed under the light of these results, and clues for a stereocontrolled electrostatically driven photochemical process are presented. These computations provide a rational basis for the formulation of a mechanistic model for photoisomerization electrostatic catalysis.  相似文献   

11.
2-Phenyl-2H-benzotriazole exhibits a planar molecular conformation both in its ground electronic state (S0) and its first excited singlet (S1) and triplet state (T1). However, introducing one or two methyl groups in the ortho positions of the phenyl ring causes the aromatic systems in the compound to lose their coplanarity in both S0 and T1 electronic states. On the other hand, 2-(2-methylphenyl)-2H-benzotriazole regains such coplanarity in its first excited singlet state S1, giving rise to population inversion that could be used to generate stimulated radiation around 350 nm.

As shown in this work, the effectiveness of the ISC process in these compounds is markedly dependent on the twisting angle, θ, of the structure; accordingly, ISC occurs to a negligible extent in a planar compound such as 2-phenyl-2H-benzotriazole, where θ = 0°. This evidence supports the assumption that planar molecular forms of the TIN-P photoprotectors are more photostable than non-planar ones due to the non effective generation via ISC of their triplet states.  相似文献   


12.
The mechanism of light-induced transformation in the salicylideneaniline molecule was studied by semiempirical PM3 calculations. The structures and energies of the minima and saddle points (transition states) on the S0, S1 and T1 potential energy hypersurfaces (PESs) were obtained, together with the gradient lines on the PESs. The structure-energy scheme was compared with the experimental findings. According to the results obtained, the following principle processes are observed: fast S1 excited state intramolecular proton transfer (ESIPT), followed by typical ESIPT fluorescence; the formation of two S1 twisted intramolecular charge transfer (TICT) structures which quench the ESIPT fluorescence; the diabatic formation of two ground state metastable coloured “post-TICT” structures responsible for photochromism.  相似文献   

13.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

14.
A special hybrid quantum mechanics/molecular mechanics forcefield is defined, parameterized and validated for studying the photoisomerization path of the retinal chromophore in the rhodopsin protein. It couples a multireference ab initio Hamiltonian (CASSCF and second-order multireference many-body perturbation theory using a CASSCF reference) to describe the chromophore while the rest of the protein is approximated with the Amber forcefield. The frontier has been carefully parameterized in order to reproduce full quantum mechanics torsional energy profiles, for both the ground state and the first excited state. It is also shown that replacing the chromophore counterion with point charges is a valid approximation. This result is interpreted in terms of a cancellation effect for which a possible explanation is given.  相似文献   

15.
The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans ‐to‐cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed.  相似文献   

16.
The fluorescence excitation and dispersed fluorescence spectra of the open-ring isomer of 1,2-bis(3-methyl-2-thienyl)perfluorocyclopentene have been measured in a supersonic free jet. No vibronic structure has been observed in the excitation spectrum. The intensity of fluorescence gradually increases with the excitation energy in the 25,500–28,700 cm−1 region, indicating that the geometry of the molecule substantially changes upon photoexcitation. The dispersed fluorescence spectrum is anomaly Stokes-shifted with respect to the excitation energy, suggesting that the S2(1B) state is initially excited followed by rapid internal conversion from the S2(1B) to S1(2A) state. The fluorescence is due to the S1(2A)–S0(1A) transition. Density functional theory calculations at the B3LYP/6-31G** level have been carried out to investigate stable conformations responsible for the observed spectra.  相似文献   

17.
李丹  薛佳丹  郑旭明 《物理化学学报》2014,30(12):2216-2223
通过共振拉曼光谱实验和量子化学计算的方法研究了4-硝基咪唑(4NI)A-带激发态衰变动力学.对4NI的振动光谱、紫外电子吸收光谱、荧光光谱和共振拉曼光谱进行了指认.在全活化空间自洽场法(CASSCF)/6-31G(d)计算水平下获得了单重激发态S1(nOπ*)和S2(ππ*)和势能面交叉点S1(nOπ*)/S2(ππ*)的优化几何结构和能量,分析了A-带共振拉曼光谱的强度模式特征,获得了短时结构动力学,并结合全活化空间自洽场法(CASSCF)理论计算结果确定了4NI在S2(ππ*)态衰变通道主要是S2,FC→S2,min(ππ*)→S0辐射弛豫.  相似文献   

18.
Abstract On irradiation of solutions of anthryl-substituted cobalt(III) cage complexes, [(l-(anthryl-9-methylamino)-8-methyl-3,6,10,13,16,19-hexaazabicyclo [6.6.6] eicosane) cobalt(III)]3+ or [(l-(4-an-thryl-9)-3-aza-butyl-l-amino)-8-methyl-3,6,10,13,16,19-hexaazabicyclo [6.6.6] eicosane)cobalt (III)]3* in the presence of ethylenediaminetetraacetic acid and platinum catalysts hydrogen was produced. These complexes act as coupled photosensitizers (anthracene moiety) and electron relays (cobalt cage) to produce H2 via energy trapping and intramolecular electron transfer initially. The intensity of fluorescence and the photochemical reactivity favour the latter complex and the excited singlet state of the anthracene chromophore is invoked as the intermediate state leading to the reduction of Co(III) to Co(II).  相似文献   

19.
The structure and excited state properties of the H- and J-aggregates of the marine carbonyl carotenoid, fucoxanthin(Fx), were studied by various spectroscopic methods, and compared with those of Fx monomers in polar organic solvents. The fluorescent analysis indicated tliat the higher vibronic states of S2 contribute more to populating the S1 state, from which fluorescent emission mainly originates. Resonance Raman and density functional theory calculations confirmed the ‘card-packed' and chead-to-taiF structures of the H- and J-aggregates of Fx, respectively. An fs time-resolved absorption study proved the coexistence of Si and intramolecular charge transfer relaxation pathways upon excitation to the S2 state for both tlie monomers and aggregates.  相似文献   

20.
The potential energy surfaces of the lowest excited states of benzene and pyrazine are investigated as a function of some of the symmetry-adapted internal coordinates by means of the INDO/S method. A large stabilization of the T2 (ππ*) state of pyrazine (≈ 0.5 eV) along the S8b vibrational coordinate is found. The calculated potential energy in some excited states (T1 in benzene, T2 and S2 in pyrazine) is a very flat function of the S16b vibrational coordinate, leading to a crossing with the potential energy of the ground state at relatively small excess of vibrational energy (≈ 1 eV). Thus the ν16b vibrational mode is postulated to play an important role in the radiationless relaxation to the ground states of these systems. No such crossing has been found near the “channel three” threshold of benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号