首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two different types of modification of activated carbon, by treatment with concentrated solution of HNO3 and outgassing treatment at high temperature, were studied in order to obtain the most effective adsorption of chromium(VI) ions from water solution. The basic parameters affecting the adsorption capacity of Cr(VI) ions on modified activated carbons were studied in details and the effect of modifications of activated carbons has been determined by studying the initial runs of adsorption isotherms. The obtained Cr(VI) adsorption isotherms were well fitted in the Freundlich equation. The reduction of Cr(VI) to Cr(III) and further ion exchange mechanism of adsorption onto oxidizing activated carbon and surface precipitation to Cr(OH)3 in case of outgassing activated carbon were found as the main adsorption mechanisms of Cr(VI) ions onto modified activated carbons. Presence of chlorides and nitrates in studied adsorption system strongly decreased the adsorption ability of Cr(VI) onto outgassing activated carbon and mechanism of this behavior is proposed.  相似文献   

2.
The adsorption of a basic dye (Methylene Blue; MB) and an acidic dye (Acid Orange; AO) has been studied on three activated carbons (ACs; FAS, SKD, and BAU) significantly differing in their porous structures and surface concentrations of ion-exchange groups and on graphitic thermal carbon black (GTCB). The effective specific surface area of FAS, SKD, and BAU determined by dye adsorption is, respectively, 60, 50, and 40% of the BET nitrogen adsorption surface area. The MB uptake on ACs and GTCB increases with rising pH, while the AO uptake decreases. Addition of an electrolyte (0.3 M NaCl) virtually does not effect the adsorption of dyes on ACs and GTCB. It is suggested that hydrophobic interactions, and not ionic ones, are the major contributors to the adsorption of dyes on ACs.  相似文献   

3.
In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.  相似文献   

4.
In this work, the influence of KOH activation on the surface chemistry of activated carbons (ACs) synthesized from polystyrene-based cation exchangeable resin (PSI) has been investigated. The surface chemistry of ACs has been characterized by using Fourier transformed infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), pH measurement, and Boehm's titration method. As a result, PSI can be successfully converted into ACs with high porosities. The total oxygen content on the ACs studied increases with increasing the KOH-to-PSI ratio. FT-IR and XPS analyses show that the resulting carbons possess a number of oxygen surface functional groups, such as carbonyl, quinone, phenol, ether, and carboxylic acid groups. The highest oxygen content and acid value are observed at a KOH-to-PSI ratio of 4 (KPS-4). However, its pH and surface basicity are higher than those of a KOH-to-PSI ratio of 2 (KPS-2), indicating the formation of basic species, such as quinone and pyrone groups. Although the oxygen-containing groups with basic character exist in the resulting carbons, all the samples are still acidic in character.  相似文献   

5.
The effects of high-pressure autoclave treatments on porous structure and surface properties were studied for a variety of activated carbons (AC, synthetic and produced from plum stones) treated with water vapour, hydrogen peroxide (10–50%) or 10% aqueous ammonia solution at relatively low temperatures (250, 350, 400C). Surface and structural parameters of modified ACs were determined using nitrogen, water, ammonia and benzene adsorption isotherms. It was found that the effects of AC modification resulting in changes in their porous structure and surface chemistry depend on the kind of initial ACs, modifier type and concentration of modifier and treatment temperature. At the same conditions synthetic ACs are modified to a larger extent than ACs prepared using natural raw materials. Repeated treatment of a given carbon intensifies changes in its porous structure.  相似文献   

6.
IntroductionElectric double layer capacitors( EDLCs) witha high power density can be used as memory back-up devices or electric vehicles.EDLCs store energyin the electric double layer by charge accumulationon the interface between the electrode and the elec-trolyte. In order to obtain reasonable energies andpower densities,the more suitable material forEDLCs musthave a high surface area with a signif-icant value of specific double layer capacitance,better pore size distribution and electro…  相似文献   

7.
In this work, activated carbons (ACs) were modified by ozone treatment to enhance the efficiency of removal of ammonia gas over the ACs. Surface properties of the ACs were confirmed by X-ray photoelectron spectroscopy (XPS) analysis and N2 adsorption isotherms at 77 K were investigated by BET and D-A methods to characterize the specific surface area, total pore volume, and micropore volume. The ammonia removal efficiency was confirmed by the gas-detecting tube technique. The results showed that the specific surface area and micropore volume of ACs were slightly destroyed as the ozone treatment time increased. However, the ozone treatment led to an increase in ammonia removal efficiency of ACs, mainly due to an increase of acid functional groups, such as carbonyl and ether groups, on carbon surfaces. It was revealed that the improvement of ammonia removal efficiency of ACs was greatly affected by the interfacial acid-base interactions between modified ACs and basic ammonia adsorbate.  相似文献   

8.
In this work, the effect of electrochemical oxidation treatment on activated carbon fibers (ACFs) was studied in the context of Cr(VI), Cu(II), and Ni(II) adsorption behavior. Ten weight percent phosphoric acid (A-ACFs) and ammonia (B-ACFs) were used for acidic and basic electrolytes, respectively. Surface properties of ACFs were determined by X-ray photoelectron spectroscopy (XPS). The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. As a result, the electrochemical oxidation treatment led to an increase in the amount of oxygen-containing functional groups. Also, the adsorption capacity of the electrochemically oxidized ACFs was improved in the order B-ACFs > A-ACFs > untreated-ACFs, in spite of a decrease in specific surface area which resulted from pore blocking by functional groups and pore destruction by acidic electrolyte. It was clearly found that the heavy metal ions were largely influenced by the functional groups on the ACF surfaces.  相似文献   

9.
The adsorption of uranium from crude phosphoric acid has been investigated using conventional activated carbons. It was found that treatment with nitric acid oxidized the surface of activated carbon and significantly increased the adsorption capacity for uranium in acidic solutions. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated. Equilibrium data were fitted to a simplified Langmuir and Freundlich isotherms for the oxidized samples which indicate that the uranium adsorption onto the activated carbon fitted well with Langmuir isotherm than Freundlich isotherm. Equilibrium studies evaluate the theoretical capacity of activated carbon to be 45.24 g kg?1.  相似文献   

10.
The effects of the humic acid (HA) nature and the activated carbon (AC) surface chemistry on the effectiveness of HA removal were investigated. Brown (BHA) and gray (GHA) humic acid fractions of different structure and physicochemical properties were tested in the adsorption process using mesoporous ACs. The modification of chemical structure and surface properties of AC was achieved by ammonization (AC/N) and hydrogen treatment (AC/H). Both approaches led to a decrease in the oxygen content followed by an increase in the carbon basicity, maintaining the porous texture of AC nearly unaltered. Over twice higher removal degree of BHA and GHA was observed for the modified ACs. The kinetics of adsorption of HA fractions have been discussed using the pseudo-second-order model and the intraparticle diffusion model. All ACs showed a higher adsorption capacity toward BHA compared to GHA, which is mainly attributed to the lower molecular weight of BHA. The shape of the equilibrium isotherms indicates a strong competition between water and HA molecules for adsorption sites of the carbon surface.  相似文献   

11.
This investigation has been devoted to a study of the chemical composition of the surfaces of activated carbons. A study has been made of the way in which changes in the surface chemistry of a series of carbons, as a result of heat treatment, affects the nature of their adsorption of water vapor. A differentiation has been made between oxygen-containing groups found on the surface of activated carbons before and after their heat treatment. It has been established that the original adsorption centers, which play a determining role in water vapor adsorption by activated carbons, comprise functional groups like strongly acidic free hydrogen ions, carboxylic and phenolic groups, situated on on the pore surface of the activated carbons. The number of these functional groups on the pore surface of the activated carbons has been correlated with the parametera 0 (the number of original adsorption centers) in the isotherm equation for water vapor adsorption. The relative pressure corresponding to the formation of an adsorption layer on the surface of the activated carbons has been shown to depend on the number of original adsorption centers, the acidic functional groups.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 35–40, January, 1991.  相似文献   

12.
研究活性炭在硫化氢存在条件下催化氧化脱除煤气中单质汞的吸附机理和探讨提高其吸附能力的方法,在模拟煤气气氛下对3种活性炭和一种活性焦进行汞的吸附性能实验,并进一步分析活性炭(焦)的孔隙结构。用BET方程处理N2等温吸附数据,计算比表面积;用HK法进行微孔分析;用BJH法计算中孔孔径分布。结果表明,硫化氢被催化氧化后,生成吸附在活性炭孔壁上的活性硫促进了对汞的吸附;随着活性炭微孔和中孔体积的增大,活性炭对汞的吸附能力得到提高。  相似文献   

13.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

14.
In this work, activated carbons (ACs) with high porosity were synthesized from polystyrene-based cation-exchangeable resin (PSI) by chemical activation with KOH as the activating agent. And the influence of the KOH-to-PSI ratio on the porosity of the ACs studied was investigated by using nitrogen adsorption isotherms at 77 K and a scanning electron microscope (SEM). As a result, PSI could be successfully converted into ACs with well-developed micro- and mesopores. The specific surface area and pore volumes increased with an increase in the KOH-to-PSI ratio. However, it was found that the addition of KOH did lead to the transformation of the micropores to the meso- and macropores. From the results of pore size analysis, quite different pore size distributions were observed, resulting from the formation of new pores and the widening of the existing micropores during KOH activation. A SEM study showed that the resulting carbons possessed a well-developed pore structure and the pore size of the ACs studied increased with the KOH-to-PSI ratio.  相似文献   

15.
In this work, fir woods and pistachio shells were used as source materials to prepare porous carbons, which were activated by physical (steam) and chemical (KOH) methods. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were first characterized by a t-plot method based on N(2) adsorption isotherms. Highly porous activated carbons with BET surface area up to 1009-1096 m(2)/g were obtained. The steam and KOH activation methods produced carbons with mesopore content in the range 9-15 and 33-49%, respectively. The adsorption equilibria and kinetics of tannic acid, methylene blue, 4-chlorophenol, and phenol from water on such carbons at 30 degrees C were then investigated to check their chemical characteristics. The Freundlich equation gave a better fit to all adsorption isotherms than the Langmuir equation. On the other hand, the intraparticle diffusion model could best follow all adsorption processes. In comparison with KOH-activated carbons, it was shown that the rate of external surface adsorption with steam-activated carbons was significantly higher but the rate of intraparticle diffusion was much lower.  相似文献   

16.
雷雪飞  薛向欣 《化学学报》2008,66(22):2539-2546
采用煅烧的硫酸盐掺杂的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag, STBBFS)作为光催化剂, 研究了Cr(VI)-柠檬酸[Cr(VI)-CA]复合体系和Cr(VI)-柠檬酸-硝酸铁[Cr(VI)-CA-FN]复合体系对 STBBFS催化剂光催化活性的影响. 结果表明: 酸性条件下, 不同复合体系对STBBFS催化剂光催化活性的促进作用按Cr(VI)-CA-FN复合体系>Cr(VI)-CA复合体系>Cr(VI)单一体系增强. Cr(VI)-CA复合体系在pH=2.5, 反应50 min后STBBFS催化剂光催化活性为0.426 mg&#8226;min―1&#8226;g―1时将溶液中的Cr(VI)全部还原; 而Cr(VI)-CA-FN复合体系在pH=2.5, 反应16 min后STBBFS催化剂光催化活性为1.2425 mg&#8226;min―1&#8226;g―1时将溶液中的Cr(VI)全部还原. 两种复合体系中, Cr(VI)离子的光催化还原过程都遵循L-H动力学规律, 虽然加入CA和FN后, 降低了吸附对光催化还原Cr(VI)的影响, 但是Cr(VI)吸附至催化剂表面仍然是整个反应过程的关键.  相似文献   

17.
The performance of various activated carbons obtained from different carbon precursors (i.e., plastic waste, coal, and wood) as adsorbents for the desulfurization of liquid hydrocarbon fuels was evaluated. To increase surface heterogeneity, the carbon surface was modified by oxidation with ammonium persulfate. The results showed the importance of activated carbon pore sizes and surface chemistry for the adsorption of dibenzothiophene (DBT) from liquid phase. Adsorption of DBT on activated carbons is governed by two types of contributions: physical and chemical interactions. The former include dispersive interactions in the microporous network of the carbons. While the volume of micropores governs the amount physisorbed, mesopores control the kinetics of the process. On the other hand, introduction of surface functional groups enhances the performance of the activated carbons as a result of specific interactions between the acidic centers of the carbon and the basic structure of DBT molecule as well as sulfur-sulfur interactions.  相似文献   

18.
The adsorption processes of three aromatic chemicals onto activated carbons (ACs) from aqueous solutions have been studied. Eucalyptus kraft lignin obtained from cellulose industry as a residual biomass has been used to prepare activated carbons by physical activation with CO2. The influences of the activation time on the surface areas and pore volumes of the ACs were analyzed. The physicochemical properties and the surface chemical structure of the adsorbents have been studied by means of N2 and CO2 adsorption, ultimate analysis, XPS, TPD and SEM. XPS and TPD spectra of the ACs have suggested the presence of aromatic rings and carbon-oxygen functional groups in the solid surfaces. The potential use of the ACs for the removal of acetaminophen (paracetamol), salicylic acid and benzoic acid has been investigated at different pH, temperature and contact time. The adsorption equilibrium data have been correlated to Langmuir isotherm model. The thermodynamic study has been developed, the values of ΔH, ΔG, and ΔS have been calculated and they indicated that the processes are endothermic for acetaminophen and exothermic for salicylic and benzoic acids. The analysis of the kinetic experiments showed that the effective diffusivities are low; 10−12 to 10−11 cm2/s, and they are the corresponding to intraparticle mass transfer, which appears as the controlling step for the net adsorption processes.  相似文献   

19.
In this work, the effects of different surface functional groups on the ammonia adsorption of porous carbons modified by electrochemical treatment in acidic solution (HNO3) under different current densities were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the oxygen content of the carbons increased with increasing current density from the XPS results. However, the pH and acid values of the treated carbons slightly decreased in a sample prepared in 0.8 A/m2 of current density (ACs-0.8). This result indicated that the surface acidity could be reduced according to the characteristics of surface functional groups introduced. From the XPS results, it was found that the growth of CO groups was predominant at ACs-0.8. This result was also supported by an ammonia gas removal test. The adsorption capacity increased to ACs-0.4, but then began to decrease at AC-0.8.  相似文献   

20.
The porous activated carbons (ACs) were prepared from corn grains through physical (steam) and chemical–physical (H3PO4‐steam) activations. The effects of steam activation temperature (700–900 °C) on pore development, surface roughness, and energetic heterogeneity were investigated in both activations. Also, the effect of prior carbonization on H3PO4‐steam activation was studied. The physical properties, surface fractal dimensions, and adsorption energy distributions of ACs were determined from nitrogen adsorption–desorption isotherm data. Both physical and chemical–physical activations show that the AC with higher surface area, relatively smoother surface, and energetically heterogeneous surface could be produced at a maximum steam activation temperature (900 °C). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号