首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ferroelectric copolymer thin films P(VDF-TrFE) are used as a ferroelectric cathode for investigation of their electron emission properties. This ferroelectric copolymer films with different thicknesses are deposited by spin-coating method, and then the annealing process is carried out to improve the crystallinities of as-deposited copolymer films. The measurement results of ferroelectric electron emission showed that the copolymer P(VDF-TrFE) films had a desired ferroelectric electron emission ability excited at low-voltage pulse, and its peak emission current can reach to be ∼1.3 μA when the pulse voltage is 280 V. In addition, the effect of film thickness on electron emission property and emission stability of copolymer thin film P(VDF-TrFE) are discussed.  相似文献   

2.
The granular CuO films are deposited on n-Si (1 0 0) and sapphire substrates using sol-gel route. Small microstrain leads to ∼5 times larger grain sizes (200-300 nm) and ∼2.5 times larger film thickness (∼0.57 μm) for sapphire than n-Si substrate, which are confirmed by X-ray diffraction and Atomic Force Microscopy. A diode-like current-voltage characteristics are observed for film deposited on n-Si substrate, which is absent for sapphire substrate. Typical manifestation of ferromagnetic character is observed for CuO films, which are strongly influenced by the substrates. Magnetic anisotropy is larger for sapphire substrate than n-Si substrate. At room temperature considerably large magnetoconductance ∼21% and soft ferromagnetic character of CuO film on n-Si substrate are attractive for functional applications.  相似文献   

3.
Transparent and conducting ITO/Au/ITO multilayered films were deposited without intentional substrate heating on polycarbonate (PC) substrate using a magnetron sputtering process. The thickness of ITO, Au and ITO metal films in the multilayered structure was constant at 50, 10 and 40 nm, respectively.Although the substrate temperature was kept constant at 70 °C, ITO/Au/ITO films were polycrystalline with an (1 1 0) X-ray diffraction peak, while single ITO films were amorphous. Surface roughness analysis indicated ITO films had a higher average roughness of 1.76 nm, than the ITO/Au/ITO film roughness of 0.51 nm. The optoelectrical properties of the ITO/Au/ITO films were dependent on the Au thin film, which affected the ITO film crystallinity. ITO/Au/ITO films on PC substrates were developed with a resistivity as low as 5.6 × 10−5 Ω cm and a high optical transmittance of 71.7%.  相似文献   

4.
We present a review on the formation of gold silicide nanostructures using in situ temperature dependent transmission electron microscopy (TEM) measurements. Thin Au films of two thicknesses (2.0 nm and 5.0 nm) were deposited on Si (1 1 0) substrate under ultra-high vacuum (UHV) conditions in a molecular beam epitaxy (MBE) system. Also a 2.0 nm thick Au film was deposited under high vacuum condition (with the native oxide at the interface of Au and Si) using thermal evaporation. In situ TEM measurements (for planar samples) were made at various temperatures (from room temperature, RT to 950 °C). We show that, in the presence of native oxide (UHV-MBE) at the interface, high aspect ratio (≈15.0) aligned gold silicide nanorods were observed. For the films that were grown with UHV conditions, a small aspect ratio (∼1.38) nanogold silicide was observed. For 5.0 nm thick gold thin film, thicker and lesser aspect ratio silicides were observed. Selected area diffraction pattern taken at RT after the sample for the case of 5.0 nm Au on Si (1 1 0)-MBE was annealed at 475 °C show the signature of gold silicide formation.  相似文献   

5.
In this work, we extracted the film's hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30-100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the HF values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have HF values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have HF values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp2 clusters does not relate directly to the hardness of the film.  相似文献   

6.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

7.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

8.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

9.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

10.
Nickel films of different thickness ranging from 15 nm to 350 nm were deposited on glass substrates, at different substrate temperatures (313-600 K) under UHV condition. The nano-structure of the films was obtained, using X-ray diffraction (XRD) and atomic force microscopy (AFM). The nano-strain in these films was obtained using the Warren-Averbach method. Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig method was used for the analysis of the reflectivity curves. The absorption peaks of Ni thin films at ∼1.4 eV (transition between the bands near W and K symmetry points) and ∼5.0 eV (transition from L2 to L1 upper) are observed, with an additional bump at about 2 eV. The over-layer thickness was calculated to be less than 3.0 nm, using the Transfer Matrix method. The changes in optical data are related to different phenomena, such as different crystallographic orientations of the grains in these polycrystalline films (film texture), nano-strain, and film surface roughness.  相似文献   

11.
Carbon nitride films have been deposited by KrF excimer laser ablation of a rotating graphite target in 5 Pa nitrogen ambient in an inverse pulsed laser deposition configuration, where the backward motion of the ablated species is utilised for film growth on substrates lying in the target plane. Topometric AFM scans of the films, exhibiting elliptical thickness distribution, have been recorded along the axes of symmetry of the deposition area. High resolution AFM scans revealed the existence of disk-like, or somewhat elongated rice-like features of 5-10 nm average thickness and ∼100 nm largest dimension, densely packed over the whole, approximately 14 × 10 cm2 deposition area. The RMS roughness of the film decreased from 9 nm near to the laser spot down to 2 nm in the outer regions. Even the highest RMS value obtained for IPLD films was less than half of the typical, 25 nm roughness measured on simultaneously deposited PLD films.  相似文献   

12.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

13.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

14.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

15.
The structure and morphology of chromium disilicide (CrSi2) nanometric films grown on 〈1 0 0〉 silicon substrates both at room temperature (RT) and at 740 K by pulsed laser ablation are reported. A pure CrSi2 crystal target was ablated with a KrF excimer laser in vacuum (∼3 × 10−5 Pa). Morphological and structural properties of the deposited films were investigated using Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GID), X-ray reflectivity (XRR), scanning (SEM) and transmission electron microscopy (TEM). From RBS analysis, the films’ thickness resulted of ∼40 nm. This value is in agreement with the value obtained from XRR and TEM analysis (∼42 and ∼38 nm, respectively). The films’ composition, as inferred from Rutherford Universal Manipulation Program simulation of experimental spectra, is close to stoichiometric CrSi2. GID analysis showed that the film deposited at 740 K is composed only by the CrSi2 phase. The RT deposited sample is amorphous, while GID and TEM analyses evidenced that the film deposited at 740 K is poorly crystallised. The RT deposited film exhibited a metallic behaviour, while that one deposited at 740 K showed a semiconductor behaviour down to 227 K.  相似文献   

16.
Indium tin oxide (ITO) films with various thicknesses in range of 40-280 nm were prepared onto a plastic substrate (PMMA). Deposition was carried out with RF magnetron sputtering method and the substrate temperature was held at ∼70 °C, in lack of the thermal damage to the polymer substrate. Changes in microstructure and electrical properties of ITO films according to their thicknesses were investigated. It was found that amorphous layer with thickness of 80 nm was formed at the interface on the polymer substrate and polycrystalline ITO could be obtained above the thickness. Conductivity of ITO films was found to be strongly dependent on the crystallinity. Consequently, it is suggested that crystallinity of the deposited films should be enhanced at the initial stage of deposition and the thickness of amorphous region be reduced in order to prepare high quality ITO thin films on polymer substrates.  相似文献   

17.
Polycrystalline cadmium telluride films were successfully deposited on glass substrates by ablating a CdTe target by pulsed Nd–YAG laser. Microstructural studies indicated an increase in the average crystallite size from 15 nm to ∼50 nm with the increase in substrate temperature during deposition. The films deposited here were slightly tellurium rich. X-ray diffraction pattern indicated that the films deposited at 300 K had wurtzite structure while those deposited above 573 K were predominantly of zinc blende structure. Residual strain in the films deposited at 300 K was quite low as compared to those deposited at higher temperatures. PL spectra of all the CdTe films were dominated by a strong peak at ∼921 nm (∼1.347 eV) followed by a low intensity peak at ∼863 nm (∼1.438 eV). Characteristics Raman peaks for CdTe indicated a peak at ∼120 cm−1 followed by peaks located at ∼140 cm−1 and 160 cm−1.  相似文献   

18.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

19.
We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF (λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm−2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm−2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence (λ ∼ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.  相似文献   

20.
In this paper, we reported a novel, simple, and cost-effective route to SnTe films. The films were prepared by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials with or without surfactant. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and field-emission scanning electron microscopy, respectively. The SnTe film deposited without surfactant consists of nanoparticles (∼100 nm). The film deposited using polyethyleneglycol (PEG) as the surfactant consists of nanoparticles with size of ∼25 nm, whereas the film deposited using polyvinylpyrrolidone (PVP) as the surfactant consists of rough rod-like nanostructures (∼50 in diameter and ∼500 nm in length), besides nanoparticles (∼40-180 nm). The SnTe film deposited with PEG is smoother and denser. The formation mechanism of the SnTe films was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号