首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Anisotropic colloidal building blocks are quite attractive as they enable the self‐assembly towards new materials with designated hierarchical structures. Although many advances have been achieved in colloidal synthetic methodology, synthesis of colloidal rings with low polydispersity and on a large scale remains a challenge. To address this issue we introduce a new site‐selective growth strategy, which relies on using patchy particles. For example, by using patchy discs as templates, silica can selectively be grown on only side surfaces, resulting in formation of silica rings. We demonstrate that shape parameters are tunable and find that these silica rings can be used as secondary template to synthesize other types of rings. This method for synthesizing ring‐like colloids provides possibilities for studying their self‐assembly and associated phase transitions, and this patchy particles template strategy paves a new route for fabricating other new colloidal particles.  相似文献   

2.
Particle shape is a critical parameter that plays an important role in self‐assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer‐sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer‐sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self‐assembly studies, the formation of three‐dimensional rotator phases of fluorescently labelled, micrometer‐sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials.  相似文献   

3.
Supramolecular hydrogels are expected to have applications as novel soft materials in various fields owing to their designable functional properties. Herein, we developed an in situ synthesis of supramolecular hydrogelators, which can trigger gelation of an aqueous solution without the need for temperature change. This was achieved by mixing two precursors, which induced the synthesis of a supramolecular gelator and its instantaneous self‐assembly into nanofibers. We then performed the in situ synthesis of this supramolecular gelator at an oil/water interface to produce nanofibers that covered the surfaces of the oil droplets (nanofiber‐stabilized oil droplets). External stimuli induced fusion of the droplets owing to disassembly of the gelator molecules. Finally, we demonstrated that this stimuli‐induced droplet fusion triggered a synthetic reaction within the droplets. This means that the confined nanofiber‐stabilized droplets can be utilized as stimuli‐responsive microreactors.  相似文献   

4.
Soft colloidal particles such as hydrogel microspheres assemble at air/water or oil/water interfaces, where the soft colloids are highly deformed and their surface polymer chains are highly entangled with each other. Herein, we report the formation of robust one‐dimensional, string‐like colloidal assemblies through self‐organization of hydrogel microspheres with shape anisotropy at the air/water interface of sessile droplets. Shape‐anisotropic hydrogel microspheres were synthesized via two‐step polymerization, whereby a hydrogel shell was formed onto preformed rigid microellipsoids. The shape anisotropy of the hydrogel microspheres was confirmed by transmission electron microscopy and high‐speed atomic force microscopy as well as by light‐scattering measurements. The present findings are crucial for the understanding of natural self‐organization phenomena, where “softness” influences microscopic assembled structures such as those of Nostoc bacteria.  相似文献   

5.
Millimeter‐scale tubes are observed to sprout from water droplets injected into a bath of toluene containing ethanol and silica colloids. This phenomenon requires that first a membrane is formed by the colloids which self‐assemble at the droplet interface, and second, that the ethanol preferentially partitions into the aqueous phase leading to an internal over‐pressure. Tube growth, eruption, and shuffling droplets are subsequently observed, depending on the concentration of ethanol and colloids selected. This work opens many possibilities in the field of biomimetic droplets for fundamental studies of artificial growth at the microscale and for emulsion‐related applications.  相似文献   

6.
Despite the importance of spatially resolved self‐assembly for molecular machines, the spatial control of supramolecular polymerization with synthetic monomers had not been experimentally established. Now, a microfluidic‐regulated tandem process of supramolecular polymerization and droplet encapsulation is used to control the position of self‐assembled microfibrillar bundles of cyclic peptide nanotubes in water droplets. This method allows the precise preferential localization of fibers either at the interface or into the core of the droplets. UV absorbance, circular dichroism and fluorescence microscopy indicated that the microfluidic control of the stimuli (changes in pH or ionic strength) can be employed to adjust the packing degree and the spatial position of microfibrillar bundles of cyclic peptide nanotubes. Additionally, this spatially organized supramolecular polymerization of peptide nanotubes was applied in the assembly of highly ordered two‐dimensional droplet networks.  相似文献   

7.
Colloidal particles may be considered as building blocks for materials, just like atoms are the bricks of molecules, macromolecules, and crystals. Periodic arrays of colloids (colloidal crystals) have attracted much interest over the last two decades, largely because of their unique photonic properties. The archetype opal structures are based on close-packed arrays of spheres of submicrometer diameter. Interest in structuring materials at this length scale, but with more complex features and ideally by self-assembly processes, has led to much progress in controlling features of both building blocks and assemblies. The necessary ingredients include colloids, colloidal clusters, and colloidal "molecules" which have special shapes and the ability to bind directionally, the control over short-range and long-range interactions, and the capability to place and orientate these bricks. This Review highlights recent experimental and theoretical progress in the assembly of colloids larger than 50 nm.  相似文献   

8.
We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a hard-core interaction. The droplets shrink in time, which models the evaporation of the dispersed (oil) phase, and we use Monte Carlo simulations for the dynamics. In the experiments, polystyrene particles were assembled using toluene droplets as templates. The arrangement of the particles on the surface of the droplets was analyzed with cryogenic field emission scanning electron microscopy. Before evaporation of the oil, the particle distribution on the droplet surface was found to be disordered in experiments, and the simulations reproduce this effect. After complete evaporation, ordered colloidal clusters are formed that are stable against thermal fluctuations. Both in the simulations and with field emission scanning electron microscopy, we find stable packings that range from doublets, triplets, and tetrahedra to complex polyhedra of colloids. The simulated cluster structures and size distribution agree well with the experimental results. We also simulate hierarchical assembly in a mixture of tetrahedral clusters and droplets, and find supercluster structures with morphologies that are more complex than those of clusters of single particles.  相似文献   

9.
Microgel particles can be fabricated with great control by droplet‐based microfluidics; however, to this end, their shape is intrinsically limited to be spherical. Existing approaches to circumvent this limitation rely on the rapid interception of transient non‐spherical preparticle shapes, greatly limiting their versatility. This paper presents a facile microfluidic approach that overcomes this limitation. The method utilizes the injection of scaffolding microgel particles into droplets that have insufficient volumes to host the microgels in a spherical shell. As a result, the drops adopt non‐spherical equilibrium shapes that serve to template non‐spherical soft supraparticles by slow and gentle chemical reactions.  相似文献   

10.
Summary: A facile method to fabricate colloidal crystal films with tunable wettability from an amphiphilic material polystyrene‐block‐poly(methyl methacrylate)‐block‐poly(acrylic acid) is presented. The wettability of the film can be tuned from superhydrophilic (CA, 0°) to superhydrophobic (CA, 150.2°) by varying the assembly temperature, while the position of the photonic bandgap of the colloidal crystal films remains virtually unchanged. The method could open new application fields of colloidal crystals in diverse environments.

The relationship of assembly temperature with water CA (inset is the water droplet profile of the relative water CA).  相似文献   


11.
Colloids are valuable model systems to understand the structure and dynamics of matter, explore new self‐assembly concepts, and realize advanced materials. Herein, we demonstrate social self‐sorting of co‐assembled families of colloids by orthogonal host/guest recognition using cyclodextrins. We show that mixtures of four partners self‐sort into their respective families without mutual interference. Additionally, the self‐assemblies and their interactions are switchable using orthogonal triggers. This study goes beyond previous features of molecular self‐sorting, and opens the design space for future self‐sorting colloidal systems via rationally designed molecular recognition.  相似文献   

12.
The particles suspended inside evaporating sessile droplets can be assembled into microscopic objects with long-ranged ordered structure. The air-water droplet interface guides the assembly and determines the shape of the resulting micropatches. We report the results of a systematic study of the mechanism of interface-templated assembly on substrates of controlled contact angle. The kinetics of drying were examined by measurements of droplet profiles, and it was found that the rate matched diffusion-limited evaporation well. The shape of the droplets and of the resulting assemblies was correlated to the dynamics of the receding contact line. The effects of major parameters controlling the process, including contact angle, particle concentration, and electrolyte, were investigated in detail. A variety of micropatch shapes were observed and categorized within the parameter space. The in-depth characterization of the process allowed the optimization of the assembly and the formulation of protocols for the deposition of nanostructured patches of different diameter, thickness, and shape.  相似文献   

13.
Polymeric capsules with an aqueous core have great potential for a wide range of applications, for example food/biomedical applications. However, synthesis of such capsules often involves the use of toxic organic solvents. Herein, an organic solvent‐free approach is developed for the synthesis of polymeric microcapsules with an aqueous core. The method is based on RAFT polymerization of divinyl monomer around the periphery of inverse emulsion water droplets acting as templates, with an amphiphilic macroRAFT species fulfilling the dual roles of RAFT agent and colloidal stabilizer. Vegetable oils, which are non‐toxic and renewable, are used as the continuous phase of these inverse emulsions, which are prepared using membrane emulsification to control the emulsion droplet size and size distribution. Relatively monodisperse emulsions with tunable droplet size in the range of approximately 10–30 µm are prepared, followed by the RAFT polymerization step to generate polymeric microcapsules having similar size as the initial droplets. This approach will be beneficial for various applications where toxic solvents need be minimized or removed completely to avoid adverse effects. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 831–839  相似文献   

14.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

15.
Controlling the distribution of ionizable groups of opposite charge in microgels is an extremely challenging task, which could open new pathways to design a new generation of stimuli‐responsive colloids. Herein, we report a straightforward approach for the synthesis of polyampholyte Janus‐like microgels, where ionizable groups of opposite charge are located on different sides of the colloidal network. This synthesis approach is based on the controlled self‐assembly of growing polyelectrolyte microgel precursors during the precipitation polymerization process. We confirmed the morphology of polyampholyte Janus‐like microgels and demonstrate that they are capable of responding quickly to changes in both pH and temperature in aqueous solutions.  相似文献   

16.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

17.
Anisotropic colloids self‐assemble into different crystal structures compared to spherical colloids. Exploring and understanding their self‐assembly behavior could lead to creation of new materials with hierarchical structures through a bottom‐up process. Herein, we report metastable self‐assembly of theta‐shaped SiO2 colloids interacting with a depletion force in a quasi‐two‐dimensional space and we demonstrate that both a metastable “prone” crystal phase and a stable “standing” crystal phase can be formed, depending on the self‐assembly path. Path selection stems from an interplay between particle–particle interactions and particle–wall interactions. In particular, a twinning of the metastable crystals was observed and two twinning mirror axes were found. A variety of complex twinned crystals were formed by each individual mirror axis or their combinations.  相似文献   

18.
Multiple emulsions with an “onion” topology are useful vehicles for drug delivery, biochemical assays, and templating materials. They can be assembled by ternary liquid phase separation by microfluidics, but the control over their design is limited because the mechanism for their creation is unknown. Herein we show that phase separation occurs through self‐similar cycles of mass transfer, spinodal decomposition or nucleation, and coalescence into multiple layers. Mapping out the phase diagram shows a linear relationship between the diameters of concentric layers, the slope of which depends on the initial ternary composition and the molecular weight of the surfactant. These general rules quantitatively predict the number of droplet layers (multiplicity), which we used to devise self‐assembly routes for polymer capsules and liposomes. Moreover, we extended the technique to the assembly of lipid‐stabilized droplets with ordered internal structures.  相似文献   

19.
Recently, a density functional theory for hard particles with shape anisotropy was developed, the extended deconvolution fundamental measure theory (edFMT). We apply edFMT to hard dumbbells, arguably the simplest non-convex shape and readily available experimentally in the form of colloids. We obtain good agreement between edFMT and Monte Carlo simulations for fluids of dumbbells in a slit and for the same system under gravity. This indicates that edFMT can be successfully applied to nearly all colloidal shapes, not just for the convex shapes for which edFMT was originally derived. A theory, such as edFMT, that allows a fast and general way of mapping the phase behavior of anisotropic colloids, can act as a useful guide for the design of colloidal shapes for various applications.  相似文献   

20.
Large‐sized carbon spheres with controllable interior architecture are highly desired, but there is no method to synthesize these materials. Here, we develop a novel method to synthesize interior‐structured mesoporous carbon microspheres (MCMs), based on the surfactant assembly within water droplet‐confined spaces. Our approach is shown to access a library of unprecedented MCMs such as hollow MCMs, multi‐chambered MCMs, bijel‐structured MCMs, multi‐cored MCMs, “solid” MCMs, and honeycombed MCMs. These novel structures, unattainable for the conventional bulk synthesis even at the same conditions, suggest an intriguing effect arising from the droplet‐confined spaces. This synthesis method and the hitherto unfound impact of the droplet‐confined spaces on the microstructural evolution open up new horizons in exploring novel materials for innovative applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号