首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The kinetics of dissociation and racemization of [Fe(phen)3]2+ have been studied in aqueous methanol solutions containing perchlorate, chloride, and thiocyanate ions. The racemization rate was decreased by ClO?4 and increased by SCN?, while the dissociation rate was decreased by ClO?4 and increased slightly by Cl? and remarkably by SCN?. The effect of anions on the reaction rates became remarkable with the increase in methanol content of the solutions. The results were reasonably explained in terms of ion association. The dissociation rate of the complex ion in the ion-pair increased in the order, ClO?4 < Cl? < SCN?, of associated anions, suggesting the ion-pair interchange mechanism for the dissociation. The ion-association constants were determined to be 11 ± 4, 18 ± 4, and 25 ± 15 (I = 0.1, 25°C) for ClO?4, Cl?, and SCN?, respectively, in 0.64 mole-fraction (0.8 volume-fraction) aqueous methanol.  相似文献   

2.
An efficient fluorescence probe, 4‐methyl‐2,6‐bis((thiophen‐2‐ylmethylimino)methyl)phenol (DFPTMA) and its SCN? adduct has been synthesized and characterized by different spectroscopic techniques like 1H NMR,13C NMR, QTOF‐MS ES+, UV‐Vis and FTIR spectroscopy. Single crystal X‐ray structure of DFPTMA is reported. In presence of SCN?, DFPTMA exhibits significant fluorescence enhancement (λEx, 455 nm, λEm, 504 nm) in aqueous methanol (water‐methanol, 1:4, V/V, 0.1 mol/L HEPES buffer, pH 7.4). Common bio‐relevant anions viz. CH3COO?, NO2?, NO3?, Cl?, Br?, I?, SO42?, HSO4?, N3?, HAsO42?, Cr2O72?, H2PO4?, ClO4?, NCO?, CN?, CO32?, F?, PO43?, S2?, HS? do not interfere in the recognition of SCN?. Lowest detection limit for SCN? is 0.88 µmol/L with response time <5 min. The SCN? assisted enhancement in emission intensity may be attributed to the formation of H‐bond which enhances the rigidity of the molecular assembly.  相似文献   

3.
Novel fluorescent chemosensor with good selectivity for F? anion was designed and synthesized. The sensor has a bearing on a single functionalized pillar[5]arene and Fe3+ metal complex (PN‐Fe), which showed prominent fluorescent response for F? anion over other common anions (Cl?, Br?, I?, AcO?, HSO4?, H2PO4?, ClO4?, CN? and SCN?). These results were evaluated by fluorescent method. The detection limit of PN‐Fe to F? was calculated to be 2.50×10?7 mol/L. Moreover, the sensor PN‐Fe3+ might serve as a recyclable component in sensing materials.  相似文献   

4.
ClO?3 ions imbedded in a KClO4 crystal can be converted to ClO3 radicals through reaction with intrinsic hole defects generated by X-irradiation, and may thus be detected by ESR spectroscopy. The limit of detection of ClO?3 using standard equipment is 1 ppm. These results imply that ClO?3 is not a primary radiolytic product of KClO4.  相似文献   

5.
The synthesis and characterization of a new tetra (triphenylphosphonium) p-tert-butylcalix[4]arene 2 is presented. Its interactions with anions were studied by 1H and 31P NMR and UV absorption spectrophotometry, showing the biggest interaction with ClO4 , I and SCN. Anion selectivity in ion-selective PVC-membrane electrodes (ISEs) plasticized with o-NPOE containing ionophore 2 was also investigated. Compound 2 shows a potentiometric response for various anions with the following selectivity pattern: ClO4 > SCN > I > Cr2O7 2 ?  > NO3 > Br > Cl.  相似文献   

6.
The differential capacity and the surface charge density curves as a function of the electrode potential for mercury/electrolyte solution in nitromethane interface are presented. For all the systems studied the capacity hump at the anodic potential region is observed. The height and the location of the hump considerably depends on the kind of anion. As a test of specific adsorption of ions in the systems studied the Esin-Markov effect was examined. The results indicated that anions appear to be specifically adsorbed from nitromethane in the order PF6?<ClO4?<Cl?<SCN?.  相似文献   

7.
Abstract

Complexation of o-chloronitrobenzene with β-cyclodextrin has been studied in 0.1 M aqueous solutions containing PF6 ?, ClO4 ?, C2O4 2-, SCN?, SO4 2- and F? anions by a polarographic method. Using an equation which takes account of the change in the cyclodextrin concentration due to the simultaneous complexation of the anion, both stability constants have been calculated. Interaction of the ClO4 ? anion with β-cyclodextrin has been confirmed by 1H NMR techniques. It has been found that the ClO4 ? anion is trapped in the β-cyclodextrin cavity. The stability constant has been calculated. Results of polarographic and 1H NMR studies have been compared.  相似文献   

8.
A novel fluoran-based fluorescent probe 2 has been designed and synthesized by using a strategy of blocking the intramolecular photoinduced electron transfer (PET) process. The probe keeps a ring-closed spirolactone structure in aqueous buffer solution. However, the oxidation of the probe by ClO? perturbs a new equilibrium of the structural interconversion between the nonfluorescent spirolactone and the fluorescent ring-opened zwitterion, which generates a highly selective fluorescent probe for ClO?. Meanwhile, the probe is cell membrane permeable and can be utilized as fluorescent probe for imaging ClO? in living cells.  相似文献   

9.
This study explored on the adsorption properties and electronic structure of SCN? via density functional theory analysis on the exterior surfaces of C60 and CNTs using B3LYP functional and 6-31G** standard basis set. Then adsorption of SCN? through nitrogen atom on the C60 fullerene is electrostatic (?48.02 kJ mol?1) in comparison with the C59Al fullerene that shows covalently attached to fullerene surface (?389.10 kJ mol?1). Our calculations demonstrate that the SCN? adsorption on the pristine and Al-doped single-walled CNTs are ?173.13 and ?334.43 kJ mol?1, indicating that the SCN? can be chemically bonded on the surface of Al-doped CNTs. Moreover, the adsorption of SCN? on the C60 surface is weaker in comparison with C59B, C59Al, and C59Ga systems but its electronic sensitivity improved in comparison with those of C59B, C59Al, and C59Ga fullerenes. The evaluation of adsorption energy, energy gap, and dipole moment demonstrates that the pure fullerene can be exploited in the design practice as an SCN? sensor and C59Al can be used for SCN? removal applications.  相似文献   

10.
《Analytical letters》2012,45(5):890-901
Abstract

A highly selective polyvinyl chloride (PVC) membrane electrode, based on N,N′‐(aminoethyl)ethylenediamide bis(2‐benzoideneimine) binuclear copper(II) complex [Cu(II)‐AEBB] as neutral carrier, was prepared for thiocyanate (SCN?) determination, which displays an anti‐Hofmeister selectivity sequence for a series of anions in the following order: SCN?>ClO4 ?>Sal? > I?>NO3 ?>Br?> Cl?>NO2 ?>SO3 2?>F?>H2PO4 ?>SO4 2?. The electrode exhibited near‐Nernst response for SCN? with a slope of –59.0 mV/decade over a wide concentration range (8.5×10?7~6.8×10?1 mol/L) with a detection limit of –5.0×10?7 mol/L in pH 5.0 phosphate buffer solution at 25°C. Alternating current (AC) impedance and equivalent circuits were used to investigate the thiocyanate response mechanism of the membrane doped with [Cu(II)‐AEBB].  相似文献   

11.
《Analytical letters》2012,45(7):1415-1421
Abstract

The coloration reagent - leucomethylene blue, the reduction product of methylene blue, is used to determine the concentration of chlorine dioxide in the presence of Cl2 and anion species such as OCl?, ClO2 ? and ClO3 ?. This simple spectrophotometric method is performed by using the extractant 1,2-dichloroethane at pH 1.3. The linear range of ClO2 measurement extends to 0.95 mgl?1 with a detection limit of 0.02 mgl?1. The presence of chlorine and hypochlorite ion can be masked by oxalic acid. The permissible maximum concentration of ClO2 ? is 2.0 mgl?1, and ClO3 ? anion does not interfere with the measurement.  相似文献   

12.
Anion-exchange extractive systems based on solutions of higher quaternary ammonium salts in the presence of solvating additives, derivatives of trifluoroacetophenone, were considered. A mathematical model of the extractive system was developed and average solvation numbers and constants of solvation of ClO 4 ? , SCN?, Br?, and NO 3 ? ions by variously structured derivatives of trifluoroacetophenone were calculated from experimental data.  相似文献   

13.
A new chemodosimeter based on pyridinium‐fused pyridinone iodide ( PI ) has been obtained through a “clean reaction” method. This compound can detect CN? in aqueous solution with a high selectivity and rapid response. The detection of CN? occurs through the nucleophilic attack of CN? on the C?N bond, which induces the destruction of the π‐conjugation on the pyridinium ring. Support of this detection mechanism was obtained by 1H NMR titration, HR‐MS, and DFT calculations. Upon the addition of 10 equivalents CN? to a solution of PI in THF/H2O (1:1, v/v), a 57‐fold enhancement in fluorescence intensity was observed at the maximum emission wavelength of 457 nm. Meanwhile, the maximum absorption wavelength was also blue‐shifted from 447 nm to 355 nm. Other common anions such as BF4?, PF6?, F?, Cl?, Br?, I?, H2PO4?, ClO4?, CH3COO?, NO2?, N3?, and SCN? had little effect on the detection of CN?. The response time of PI for CN? was less than 5 seconds. The detection limit was calculated to be 5.4×10?8 M , which is lower than the maximum permission concentration in drinking water (1.9 μM ) set by the World Health Organization (WHO).  相似文献   

14.
The voltammetric oxidation of nickel amalgam from the hanging mercury drop electrode in aqueous solutions of F?, Cl?, Br?, I?, N3?, SCN?, and ClO4? ions have been investigated. Concentrations of these anions were sufficiently low to depress the formation of complexes with nickel(II) in the bulk of the solution.An increase in the rate of anodic oxidation with increase of concentration of anions was observed both without and with correction for the φ2 potential. This increase is explained as due to a catalytic effect of anions adsorbed on the electrode surface.Using the concept of changes of the activity coefficient of the activated complex it was possible to show that the oxidation of the nickel amalgam in thiocyanates and azides proceeds by the formation of the activated complex with bound SCN? and N3? anions. These complexes form only in the activated state and decompose when products leave the double layer.In chlorides and bromides a similar mechanism is suggested only at larger surface concentration of anions. At lower surface concentration and in iodides the oxidation proceeds by the activated complex with no anions bound to the nickel, only long-range interactions of adsorbed anions with activated complex then exist.The order of these electrode reactions was calculated using the concept of the surface activity.The two-step mechanism of the charge transfer is also discussed.  相似文献   

15.
A highly selective chemosensor 1 based on an acylhydrazone group as binding site and naphthalene group as the fluorescence signal group were described, which could instantly detect CN? in water with specific selectivity and high sensitivity. The detection of cyanide was performed via the nucleophilic attack of cyanide anion on the carbonyl group, which could be confirmed by 1H NMR, 13C NMR, ESI‐MS and DFT calculations. The addition of CN? to sensor 1 induced a remarkable color change from colorless to yellow and generated a blue fluorescence, these sense procedure could not interfered by other coexistent competitive anions (F?, Cl?, Br?, I?, AcO?, H2PO4?, HSO4?, ClO4?, SCN?, S2?, NO3? and SO42?). The detection limits were 5.0×10?7 M and 2.0×10?9 M of CN? using the visual fluorescent color changes and fluorescence spectra changes respectively, which is far lower than the WHO guideline of 1.9×10?6 M . Test strips based on sensor 1 were fabricated, which could act as a convenient and efficient CN? test kit to detect CN? in pure water for “in‐the‐field” measurement.  相似文献   

16.
The gelation behavior of lithocholate (LC?) with different metal ions in water was investigated. The microstructures of hydrogels were determined to be three‐dimensional (3D) networks of fibrous aggregates. The formation of fibrils was speculated to be mainly driven by the coordination between carboxylate of LC? and metal ions, accompanied by the assistance of noncovalent interactions such as electrostatic and hydrophobic interactions. The hydrogels, which can maintain the mechanical strength at higher temperature, exhibit thermal stability. Their gelation capability was enhanced with the increase in acidity. The hydrogels of LC? and Cu2+ mixtures served as the precursors for producing network nanostructures of CuS nanoparticles. These new CuS networks exhibit high fluorescence quenching ability and can act as an effective fluorescent sensing platform for ssDNA detection.  相似文献   

17.
The applicability of CZE with mass spectrometric detection for the determination of four chlorine species, namely chloride and three stable chlorine oxyanions, was studied. The main aspects of the proper selection of BGE and sheath liquid for the CE‐MS determinations of anions with high mobility were demonstrated, pointing out the importance of pH and the mobility of the anion in the BGE. The possibility of using uncoated fused silica capillary and common electrolytes for the separation was shown and the advantage of using extra pressure at the inlet capillary end was also presented. The linear range was found to be 1–100 µg/mL for ClO3? and ClO4?, 5–500 µg/mL for ClO2?, and 25–500 µg/mL for Cl?, but the sensitivity can be greatly improved if larger sample volume is injected and electrostacking effect is utilized. The LOD for ClO3? in drinking water was 6 ng/mL, when very large sample volume was injected (10 000 mbar·s was applied).  相似文献   

18.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

19.
A highly selective PVC membrane electrode was prepared for thiocyanate (SCN?) determination, based on macrotricyclic binuclear Cu(II)–Schiff base complex as an ionophore. The novel macrotricyclic compound (cryptand) was synthesized by condensation of 4,4′-diamino-dibenzo-18-crown-6 with bis(4-formyl phenyl)terephthalate under high-dilution condition and the structure was confirmed by FT-IR, 1H NMR,13C NMR and MS studies. The Cu(II) complex of the compound was prepared and was examined for use as anion-selective electrode as a carrier which displays an anti-Hofmeister selectivity sequence in following order: SCN? > ClO4 ? > NO3 ? > CN? > I? > CO3 2? > NO2 ? > Br? > Cl? > SO4 2? with a preference for thiocyanate ion over many common anions. The electrode has a linear dynamic range between 1.0 × 10?7 and 1.0 × 10?1 M, with a Nernstian slope of ?58.9 mV decade?1 and detection limit of 3.1 × 10?8 M. The working pH range of the sensor was found be in the range of 3.0–8.0. It exhibits a fast response time of 20 s and has a lifetime of about 2 months. Application of the electrode for determination of thiocyanate in waste water samples and in human urine samples have also been demonstrated.  相似文献   

20.
Recently reported ionophore‐based ion‐selective nanospheres contained pH‐independent and positively charged solvatochromic dyes. Here, we evaluate systematically the effect of anions to the fluorescence response of the nanospheres. The anion interference was found significant for anion concentrations above 10 mM. The sensor responses in the presence of various anion background was studied. While target ion (K+) causes the fluorescence of the nanospheres to decrease, increasing anion background also leads to lower fluorescence intensity. Lipophilic anions such as ClO4?, SCN?, and I? exhibited much more interference than hydrophilic anions (e. g., NO3?, Cl?, F?, SO42?). The trend of the anion interference followed the Hofmeister series. A theoretical model was also demonstrated based on anion adsorption on the surface of the nanospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号