首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A meticulously designed, polar, non‐centrosymmetric lead borate chloride, Pb2BO3Cl, was synthesized using KBe2BO3F2 (KBBF) as a model. Single‐crystal X‐ray diffraction revealed that the structure of Pb2BO3Cl consists of cationic [Pb2(BO3)]+ honeycomb layers and Cl? anions. Powder second harmonic generation (SHG) measurements on graded polycrystalline Pb2BO3Cl indicated that the title compound is phase‐matchable (type I) and exhibits a remarkably strong SHG response, which is approximately nine times stronger than that of potassium dihydrogen phosphate, and the largest efficiency observed in materials with structures similar to KBBF. Further characterization suggested that the compound melts congruently at high temperature and has a wide transparency window from the near‐UV to the mid‐IR region.  相似文献   

2.
KBe2BO3F2 (KBBF) is still the only practically usable crystal that can generate deep‐ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH4Be2BO3F2 (ABBF) and γ‐Be2BO3F (γ‐BBF), which not only overcome the layering but also can be used as next‐generation DUV NLO materials with the shortest type I phase‐matching second‐harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ‐BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal.  相似文献   

3.
Designing deep-ultraviolet (DUV) nonlinear-optical (NLO) crystals is one of the major current research interests, but it faces a great challenge. In order to overcome the problem of crystal growth and the toxicity of BeO raw materials in KBe2BO3F2 (KBBF), the only applicable DUV NLO crystal so far, we substitute Be2+ cations with Zn2+ in the KBBF structure and modify the halogen anions, by which three new Zn-containing KBBF-like compounds, CsZn2BO3X2 (X2=F2, Cl2, and FCl), have been successfully synthesized. They all exhibit excellent NLO properties, including improved SHG responses (2.8–3.5×KDP) and short UV cut-off edges (<190 nm). In comparison with KBBF, CsZn2BO3X2 (X2=F2, Cl2, and FCl) are all chemically benign and have better growth habits, so they are all promising as DUV NLO crystals. Further study on structure–property relationships indicates that the mixing of halogen anions is a feasible strategy to enhance the SHG responses of the KBBF family.  相似文献   

4.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3? with organic C(NH2)3+ trigonal units and BeO3F with SO3F? tetrahedra. Therefore, C(NH2)3SO3F is a metal‐free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase‐matching wavelengths can reach 200 nm. These findings highlight the exploration of metal‐free compounds as nontoxic and low‐cost UV NLO materials as a new research area.  相似文献   

5.
A new beryllium‐free deep‐ultraviolet (DUV) nonlinear optical (NLO) material, β‐Rb2Al2B2O7 (β‐RABO), has been synthesized and characterized. The chiral nonpolar acentric material shows second‐harmonic generation (SHG) activity at both 1064 and 532 nm with efficiencies of 2×KH2PO4 and 0.4×β‐BaB2O4, respectively, and exhibits a short absorption edge below 200 nm. β‐Rb2Al2B2O7 has a three‐dimensional structure of corner‐shared Al(BO3)3O polyhedra. The discovery of β‐RABO shows that through careful synthesis and characterization, replacement of KBe2BO3F2 (KBBF) by a Be‐free DUV NLO material is possible.  相似文献   

6.
RbLi2Ga2(BO3)3     
The structure of rubidium dilithium digallium tris­(borate), RbLi2Ga2(BO3)3, contains two‐dimensional sheets of open‐branched rings of GaO4 tetrahedra and planar BO3 triangles that are joined by LiO4 tetrahedra to form a three‐dimensional framework. Ten‐coordinate Rb atoms lie on twofold axes and occupy channels within the framework that extend along the b axis.  相似文献   

7.
PbZn2(BO3)2 crystallizes in the space group Pccn, with the Pb cation at a site with imposed twofold symmetry. The compound represents a new structure type in which ZnBO3 layers are bridged by Pb2+ cations, giving rise to a three‐dimensional framework. Channels parallel to the [010] direction accommodate the stereochemically active lone pairs of the Pb2+ cations.  相似文献   

8.
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2?H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)] layers with noncoordination [NO3]? anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.  相似文献   

9.
Fluorooxoborates have inspired investigations of deep‐ultraviolet (DUV) nonlinear optical (NLO) materials that can meet the multiple criteria. Herein, five stable structures with the composition of BaB2O3F2 (I–V) are discovered using the ab initio evolutionary algorithm. Among them, BaB2O3F2‐I has been synthesized experimentally and confirms the reliability of the method. All of the predicted structures possess extremely wide band gaps (8.1–9.0 eV). Moreover, four new structures exhibit giant second harmonic generation (SHG) coefficients (>3×KDP, d36=0.39 pm V?1). A novel type of the [BOF] layer with BO3:BO3F ratio of [1:1] is found in BaB2O3F2‐II and BaB2O3F2‐III. While BaB2O3F2‐IV and BaB2O3F2‐V are solely composed of the BO3F group and have colossal SHG coefficients (ca. 4×KDP). It gives the direct evidence that the BO3F group could generate strong SHG effect. Most importantly, the influences of BO3:BO3F ratio and their number density on band gap, birefringence and SHG effects are investigated.  相似文献   

10.
Pr(BO2)3 and PrCl(BO2)2: Two Praseodymium meta‐Borates in Comparison Single‐crystalline PrCl(BO2)2 can be obtained by the reaction of praseodymium, Pr6O11 and PrCl3 with a small excess of B2O3 in evacuated silica tubes after seven days at 850 °C. If NaCl is additionally used as flux, single crystals of Pr(BO2)3 dominate the main product. Both praseodymium(III) meta‐borates are air and water stable. The crystals of PrCl(BO2)2 emerge as long, thin, pale green needles which tend to severe twinning due to their fibrous habit. The crystal structure (triclinic, P1¯; a = 420.56(4), b = 655.42(7), c = 808.34(8) pm, α = 82.361(8), β = 89.173(9), γ = 71.980(7)°, Z = 2) exhibits zigzag chains {[(B1)ot1/1Oe2/2(B2)Ot1/1Oe2/2]2−} (≡ {[BO2]}) of corner‐linked [BO3]3− triangles with syndiotactic orientation of the terminal oxygen atoms which are running parallel to the [100] direction. The Pr3+ cations are surrounded by three Cl and seven O2− anions with the shape of a tetracapped trigonal prism. The green, transparent crystals of Pr(BO2)3 (monoclinic, C2/c; a= 984.98(9), b = 809.57(8), c = 641.02(6) pm, β = 126.783(9)°, Z = 4) appear either lath‐shaped or rather spherical. In the crystal structure the B3+ cations reside both in trigonal planar as well as in tetrahedral coordination of oxygen atoms. Both types of borate polyhedra ([BO3]3− and [BO4]5−) are linked via corners to form chains of the composition {[(B2)‐Ot1/1Oe2/2(B1)Oe4/2(B2)Ot1/1Oe2/2]3−} (≡ {[BO2]}) which run parallel [101]. The coordination sphere of the Pr3+ cations consists of ten oxide anions which build up a bicapped square antiprism.  相似文献   

11.
Two Fluoride Borates of Gadolinium: Gd2F3[BO3] and Gd3F3[BO3]2 By flux‐supported solid‐state reaction of Gd2O3 and GdF3 with B2O3 (flux: CsCl, molar ratio: 1 : 1 : 1 : 6, sealed tantalum capsule, 700 °C, 7 d) the new gadolinium fluoride borate Gd2F3[BO3] (monoclinic, P21/c; a = 1637.2(1), b = 624.78(4), c = 838.04(6) pm, β = 93.341(8)°; Vm = 64.418(6) cm3/mol, Z = 8) was obtained as colourless, prismatic, face‐rich single crystals. The four crystallographically different Gd3+ cations (CN = 9) are all capped square‐antiprismatically surrounded by fluoride and oxide anions, in which the latter represent always components of isolated trigonal planar [BO3]3— anions. The six crystallographically independent F anions all reside in more or less planar coordination of three Gd3+ cations. Thus the constitution of Gd2F3[BO3] can be described as a sequence of alternating layers each of the composition Gd[BO3] and GdF3 parallel (100), respectively. The crystal structures of Gd2F3[BO3] and the shortly published Gd3F3[BO3]2 (monoclinic, C2/c; a = 1253.4(1), b = 623.7(1), c = 836.0(1) pm, β = 97.404(6)°; Vm = 97.571(9) cm3/mol, Z = 4) are compared with each other. Due to the structural analogies between these two gadolinium fluoride borates, a disorder model of the boron atoms frequently found for Gd2F3[BO3] is able to be transferred to Gd3F3[BO3]2 as well.  相似文献   

12.
Single crystals of a new rubdidium beryllium borate, RbBe4(BO3)3, have been obtained by spontaneous nucleation from a high‐temperature melt. This new ortho­rhom­bic (Pnma) structure type contains [Be2BO4] rings, made of two BeO4 tetra­hedra and one BO3 triangle, which constitute the basic structural units. The m plane runs through the B and one of the O atoms and intersects the ring. These rings form chains in the a direction, which are connected in the b and c directions to form zeolite‐type cages in which the Rb+ cations are located, at sites of m symmetry.  相似文献   

13.
In contrast to the well-investigated halogen-containing borates and carbonates, very few halogen-containing borate carbonate compounds have been reported. Specifically, no example of borate carbonate fluoride has been synthesized successfully until now. Herein, the planar π-conjugated units [BO3]3− and [CO3]2− and the F ions are introduced simultaneously into one crystal structure resulting in the first borate carbonate fluoride, Ba3(BO3)(CO3)F, by the high-temperature solution method in the atmosphere. Its structure features a hexagonal channel formed by the [BO3]3− and [CO3]2− units with the [F3Ba8]13+ trimers filled in the channel. Various characterizations including single crystal- and powder-XRD, EDX, IR, UV-vis-NIR, and TG-DSC, together with the first principles calculation have been carried out to verify the structure and fully understand the structure–property relationships.  相似文献   

14.
The title compound, tricadmium trizinc tetraborate, Cd3Zn3(BO3)4, is a new non‐linear optical (NLO) crystal and its structure has been determined by single‐crystal X‐ray diffraction. This compound is composed of planar [BO3]3− groups sharing O atoms with CdO4 or ZnO4 tetrahedra. The BO3 triangles are located on threefold axes and are arranged with nearly the same orientation. The Cd and Zn atoms are disordered on the same site in the proportion 1:1. A strong second harmonic generation of Nd:YAG laser radiation (λ = 1064 nm) has been observed for a crystal of the title compound.  相似文献   

15.
Through extensive research on the PbO / PbBr2 / B2O3 system, a new single crystal of yellow lead‐containing oxyborate bromine, [O2Pb3]2(BO3)Br, was grown from the melt. It crystallizes in the centrosymmetric space group Cmcm (no. 63) of the orthorhombic system with the following unit cell dimensions: a = 9.5748(8) Å, b = 20.841(2) Å, c = 5.7696(5) Å, and Z = 4. The whole structure is characterized by an infinite one‐dimensional (1D) 1[O2Pb3] double chain, which is based on the OPb4 oxocentered tetrahedra and considered as the derivative of the continuous sheet of OPb4 tetrahedra from the tetragonal modification of α‐PbO. The 1D 1[O2Pb3] double chains are further bridged by the BO3 units through common oxygen atoms to form two‐dimensional (2D) 1[[(O2Pb3)(BO3)] layers, with Br atoms situated between the layers. IR spectroscopy, UV/Vis/NIR diffuse reflectance spectroscopy, and thermal analysis were also performed on the reported material.  相似文献   

16.
The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep‐ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB4O6F (CBF), which combines the superior structural properties of two well‐known NLO materials, β‐BaB2O4 (BBO) and KBe2BO3F2 (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (≈1.9×KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and shows an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials.  相似文献   

17.
Trirubidium diyttrium triborate contains zigzag chains of corner‐sharing [Y2O10] dimers. The chains are reinforced by one independent BO3 group and crosslinked by the other two types of BO3 groups to form a three‐dimensional framework. Channels along the [100] direction accommodate the Rb+ cations.  相似文献   

18.
The title compound, bis­(borato)­dodeca(tert‐butoxo)­octa­deca­lithium, [Li18(BO3)2(C4H9O)12], is formulated conveniently as [{(tBuOLi)3(Li3BO3)}2(tBuOLi)6]. A central 12‐membered ring and two outer six‐membered rings are formed by alternating Li+ cations and alkoxide O atoms. Sandwiched between the central ring and each of the outer rings is a planar array of three further Li+ cations surrounding a [BO3]3− anion. Thus, the mol­ecule consists of a cationic [Li18(OtBu)12]6+ cage encapsulating two borate anions. This compound is the first example of a structurally characterized polynuclear lithium borate, and a rare case of a lithium alkoxide cage with nuclearity greater than eight. All the alkoxide ligands are triply bridging, and the lithium ions have trigonal‐planar, trigonal‐pyramidal and fourfold coordination, all with major distortions from regular coordination geometry.  相似文献   

19.
In this study, lithium yttrium borate (LYBO) phosphor was doped with various concentrations of trivalent dysprosium ions. To produce these phosphors, the raw materials were sintered. The phase conformation, crystallinity, grain size, and overall morphology of the synthesized phosphors were studied with X-ray diffraction and scanning electron microscopy. The optimized LYBO phosphor, i.e., the LYBO phosphor that exhibited the highest X-ray- and ultraviolet (UV)-induced photoluminescent intensities, had a Dy3+ concentration of 4 mol%. Photoluminescence analysis showed that this phosphor could be easily excited with near-UV light (300–400 nm). The dominant photoluminescence bands were found in the blue (480 nm) and yellow (577 nm) regions of the visible spectrum. The light yield of the X-ray-induced luminescence of the optimized Li6Y(BO3)3:Dy3+ was found to be 66% of that of the commercially available X-ray imaging material, Gd2O2S:Tb3+ (GOS). The chromaticity coordinates of the Li6Y(BO3)3:Dy3+ phosphor were x = 0.34 and y = 0.32, which agree well with achromatic white (x = 0.33, y = 0.33). The results of this study show that the synthesized Li6Y(BO3)3:Dy3+ phosphor could be used as X-ray imaging material.  相似文献   

20.
《Solid State Sciences》2001,3(4):469-475
The structure of Li3Gd(BO3)2 has been solved by X-ray diffraction study on single crystal. This novel borate crystallizes in the monoclinic system with the P21/c space group (Z=4). The cell parameters are respectively equal to a=8.724(2), b=6.425(2), c=10.095(2) Å and β=116.85(2)°. Refinements of 110 parameters using 2924 independent reflections having I>2σ(I) converged to R1=0.028 (wR2=0.058). The structure of Li3Gd(BO3)2 is made up of double layers of eightfold coordinated Gd atoms parallel to the (bc) plane. They are linked by respectively three- and four-coordinated boron and lithium atoms. The structure is compared to that of the homologous sodium compounds, Na3Ln(BO3)2 (Ln: La, Nd), in which LnO8 polyhedra also form a bi-dimensional array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号