首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To covalently immobilize gelatin or collagen type I on poly-L-lactic acid (PLLA) film surfaces poly(hydroxyethyl methacrylate) (PHEMA) or poly(methacrylic acid) (PMAA) was grafted via photooxidization and subsequent UV-induced polymerization [Makromol. Chem. 186 (1985) 1533.1]. For films grafted with PHEMA, methyl sulfonyl chloride was used to activate the hydroxyl groups and for films grafted with PMAA 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide was used to activate the carboxyl groups. Gelatin and collagen were finally reacted with the activated hydroxyl or carboxyl groups to obtain covalently immobilized protein layers. Grafting of PHEMA, PMAA and protein on the surfaces was confirmed using ATR-IR and XPS. Surface wettability of the modified films was improved. The protein immobilized PLLA may be widely used as a biocompatible material.  相似文献   

2.
通过紫外辐射接枝在聚乳酸膜表面引入聚丙烯酸的方法使聚乳酸材料表面的亲水性和细胞相容性得到改善,研究了各种处理条件对材料表面的羧基密度、表面形态和表面接触角的影响,同时还考察了紫外辐射接枝聚丙烯酸的聚乳酸表面的成骨细胞相容性.红外光谱分析和羧基密度测定结果表明:通过紫外光引发接枝,聚丙烯酸被成功接枝到聚乳酸表面,而且接枝密度受接枝时间和聚丙烯酸质量分数的影响很大.接触角和原子力显微镜研究结果表明:接枝聚丙烯酸后的聚乳酸表面的亲水性和粗糙度明显增加,能够促进成骨细胞的生长.  相似文献   

3.
In this work, poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) film was fabricated by a solution-casting method and subsequently was modified by NaOH treatment to improve the surface hydrophilic property. Surface properties including hydrophilicity, surface appearance and functional groups were characterized by water contact angle measurement, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed the hydrophilicity of PHBHHx film was obviously improved by the NaOH treatment due to the topography changes promoted by the NaOH-etching and the introduction of polar groups included hydroxyl and carboxyl on the topmost surface layers. However, the modified film exhibited an aging effect: the hydrophilicity decreases with time elapsed during storage. It was found that the aging rate was strongly dependent on the crystallinity of the film and the storage environment. The sample with high-crystallinity lost hydrophilic property slower than that with low-crystallinity. Hydrophilic and low-temperature environment also prevented the modified PHBHHx from fast losing of the hydrophilicity.  相似文献   

4.
Biofilms are complex microbial communities with important biological functions including enhanced resistance against external factors like antimicrobial agents. The formation of a biofilm is known to be strongly dependent on substrate properties including hydrophobicity/hydrophilicity, structure, and roughness. The adsorption of (macro)molecules on the substrate, also known as conditioning film, changes the physicochemical properties of the surface and affects the bacterial adhesion. In this study, we investigate the physicochemical changes caused by Periwinkle wilt (PW) culture medium conditioning film formation on different surfaces (glass and silicon) and their effect on X. fastidiosa biofilm formation. Contact angle measurements have shown that the film formation decreases the surface hydrophilicity degree of both glass and silicon after few hours. Atomic force microscopy (AFM) images show the glass surface roughness is drastically reduced with conditioning film formation. First-layer X. fastidiosa biofilm on glass was observed in the AFM liquid cell after a period of time similar to that determined for the hydrophilicity changes. In addition, attenuation total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy supports the AFM observation, since the PW absorption spectra increases with time showing a stronger contribution from the phosphate groups. Although hydrophobic and rough surfaces are commonly considered to increase bacteria cell attachment, our results suggest that these properties are not as important as the surface functional groups resulting from PW conditioning film formation for X. fastidiosa adhesion and biofilm development.  相似文献   

5.
The surface of a poly(l-lactic acid) (PLLA) film was modified with poly(acrylic acid) (PAA) by plasma-initiated polymerization to increase the interaction between PLLA and cellulose single nanofibres (CSNF). The surface wettability of the PAA grafted PLLA film (PLLA-PAA film) was investigated by contact angle measurements. Modification of the PLLA film with PAA decreased the contact angle from 61° to 50°. The surface morphologies of the PLLA film, PLLA-PAA film and CSNF-coated PLLA-PAA film were studied by atomic force microscopy. The interaction between the CSNF and PLLA layers was strengthened by incorporation of a PAA layer onto the PLLA films and it is higher than 2N as proved by a peeling test. This is probably because the carboxyl groups of PAA form hydrogen bonds with the hydroxyl groups of CSNF.  相似文献   

6.
Radio frequency (RF) plasma treatment in O2 was applied to modify the surface of poly (l-lactic acid) (PLLA) and poly (d,l-lactic acid-coglycolic acid) (PLGA) as biodegradable polymers. The surface structure, morphology, wettability and surface chemistry of treated films were characterized by water drop contact angle measurement, scanning electron microscope (SEM), optical invert microscope, differential scanning calorimetry (DSC) and ATIR–FTIR spectroscopy. The cell affinity of the oxygen plasma treated film was evaluated by nervous tissue B65 cell culture in stationary conditions. The results showed that the hydrophilicity increased greatly after O2 plasma treatment. The results showed that improved cell adhesion was attributed to the combination of surface chemistry and surface wettability during plasma treatment. Cell culture results showed that B65 nervous cell attachment and growth on the plasma treated PLLA was much higher than an unmodified sample and PLGA. Surface hydrophilicity and chemical functional groups with high polar component play an important role in enhancing cell attachment and growth.  相似文献   

7.
Hydrolysis of poly(L -lactide) (PLLA) films in 0.01N NaOH at 37°C was investigated by gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and polarizing optical microscopy. The change in molecular weight distribution and surface morphology of PLLA films during hydrolysis revealed that PLLA film hydrolysis in dilute alkaline solution proceeded mainly via the surface erosion mechanism. An insignificant dependence of the rate of weight loss per unit surface area on the PLLA film thickness also supported this conclusion. Etching of the outside of PLLA spherulites resulted in preferred hydrolysis of PLLA chains in the amorphous region. The disorientation of lamella and inhomogeneous erosion in the spherulites implied that hydrolysis of PLLA chains occurred predominantly in the amorphous region between the crystalline regions in the spherulites. The rate of weight loss per unit surface area decreased linearly with the increase in the initial crystallinity of PLLA film, while the radius of spherulites had practically no significant effect on the hydrolysis of PLLA film. The specific low molecular weight of PLLA chains produced by hydrolysis increased with the rise in annealing temperature of the PLLA film, suggesting that the PLLA chains released were the component of one fold in the crystalline region. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 59–66, 1998  相似文献   

8.
Surface properties and enzymatic degradation of poly(l-lactide) (PLLA) end-capped with hydrophobic dodecyl and dodecanoyl groups were investigated by means of advancing contact angle (θa) measurement, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The θa values of end-capped PLLA films were larger than those of non-end-capped PLLA films, suggesting that the hydrophobic dodecyl and dodecanoyl groups were segregated on the film surface. The weight changes of end-capped PLLA thin films during enzymatic degradation in the presence of proteinase K were monitored by using a QCM technique. The relatively fast weight loss of PLLA film occurred during first few hours of degradation, followed by a decrease in the erosion rate. The erosion rate of PLLA films at the initial stage of degradation was dependent on the chain-end structure of PLLA molecules, and the value decreased with an increase in the amount of hydrophobic functional groups. The surface morphologies of PLLA thin films before and after degradation were characterized by AFM. After the enzymatic degradation, the surface of non-end-capped PLLA films was blemished homogeneously. In contrast, the end-capped PLLA thin films were degraded heterogeneously by the enzyme, and many hollows were formed on the film surface. From these results, it has been concluded that the introduction of hydrophobic functional groups at the chain-ends of PLLA molecules depressed the erosion rate at the initial stage of enzymatic degradation.  相似文献   

9.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

10.
The surfaces of poly(l-lactide) (PLLA) microspheres were modified by chitosan via a method of hydrolysis and grafting-coating to improve their compatibility to chondrocytes. The PLLA microspheres with a diameter of 74-150mum were fabricated by an oil/water emulsion solvent evaporation method, followed by hydrolysis in alkaline solution to produce a larger number of carboxyl groups. Using water-soluble carbodiimide as a coupling reagent, chitosan was covalently grafted onto the microspheres. Due to the physical entanglement and insolubility at neutral pH, unbonded chitosan molecules were stably remained to yield a large amount of coated chitosan. Biological performance of the control PLLA and the chitosan-coated PLLA microspheres were assessed by in vitro culture of rabbit auricular chondrocytes. After 24h and 7d culture, the chitosan-coated PLLA microspheres, especially the ones with larger chitosan amount, exhibited stronger ability to promote cell attachment and proliferation, and maintain the secretion function of the chondrocytes. Therefore, the chitosan-coated PLLA microspheres can be potentially used as the injectable cell microcarriers for chondrogenesis in cartilage tissue engineering.  相似文献   

11.
Porous poly(ε‐caprolactone) (PCL) films were prepared by the removal of poly(L ‐lactide) (PLLA) from phase‐separated PLLA/PCL blend films using the selective Proteinase K™‐catalyzed hydrolysis of PLLA and subsequent elution of its water‐soluble oligomers and monomer into the surrounding hydrolysis media. Polarimetry, gravimetry, and differential scanning calorimetry (DSC) confirmed the complete removal of PLLA molecules from the blend films within 5 d of the Proteinase K‐catalyzed hydrolysis and therefore the formation of porous PCL films when the initial PLLA content [XPLLA(0)(w/w) = PLLA/(PCL + PLLA)] of the blend films was in the range 0.3–0.5. The fragmentation of the blend film with XPLLA(0) = 0.7 occurred when the Proteinase K‐catalyzed hydrolysis was continued for longer than 5 d. These findings exhibited that both the PLLA‐rich and PCL‐rich phases were continuous in the blend films for XPLLA(0) ranges of 0.3–0.7 and of 0.3–0.5, respectively, and that the PCL‐rich phase became dispersed when XPLLA(0) was increased to 0.7. The dependence of enzymatic hydrolysis rate on XPLLA(0) strongly suggests that the Proteinase K‐catalyzed hydrolysis of the blend films occurs at the interfaces of PLLA‐rich and PCL‐rich phases as well as at the film surfaces.  相似文献   

12.
Wettability was controlled in a rational manner by individually and simultaneously manipulating surface topography and surface chemical structure. The first stage of this research involved the adsorption of charged submicrometer polystyrene latex particles to oppositely charged poly(ethylene terephthalate) (PET) film samples to form surfaces with different topographies/roughness; adsorption time, solution pH, solution ionic strength, latex particle size, and substrate charge density are external variables that were controlled. The introduction of discrete functional groups to smooth and rough surfaces through organic transformations was carried out in the second stage. Amine groups (-NH(2)) and alcohol groups (-OH) were introduced onto smooth PET surfaces by amidation with poly(allylamine) and adsorption with poly(vinyl alcohol) (PVOH), respectively. On latex particle adsorbed surfaces, a thin layer of gold was evaporated first to prevent particle redistribution before chemical transformation. Reactions with functionalized thiols and adsorption with PVOH on patterned gold surfaces successfully enhanced surface hydrophobicity and hydrophilicity. Particle size and biomodal particle size distribution affect both hydrophobicity and hydrophilicity. A very hydrophobic surface exhibiting water contact angles of 150 degrees /126 degrees (theta(A)/theta(R)) prepared by adsorption of 1-octadecanethiol and a hydrophilic surface with water contact angles of 18 degrees /8 degrees (theta(A)/theta(R)) prepared by adsorption of PVOH were prepared on gold-coated surfaces containing both 0.35 and 0.1 microm latex particles. The combination of surface topography and surface-chemical functionality permits wettability control over a wide range.  相似文献   

13.
In this study, we investigate the hydration of three different functional groups present on cellulose nanocrystal (CNC) surfaces: hydroxyls, carboxylates and sulphates by means of quantum chemical calculation. The performance of several density functional theory (DFT) functionals in reproducing, against higher level MP2 benchmark calculations, relevant non-covalent CNC interactions is also assessed. The effect of a sodium ion on the hydration of the surface functional groups was also investigated. Major restructuring of the hydrogen-bonding network within cellulose was found in the presence of a sodium ion. The calculated binding energy of water with a surface group ion pair was also greater, which indicates a greater hydrophilicity of CNC surfaces in the presence of adsorbed sodium. Cellulose hydrophilic surfaces (1 1 0) and (1 ?1 0) were also calculated using DFT methods. The results indicate that the surfaces possess different electrostatic potential maps. Hydrogen bond restructuring is found on the chemically modified surfaces. The adsorption energy of water and electrolyte is also found to be different on each surface.  相似文献   

14.
The introduction of antibacterial property, conductivity, wettability and antithrombogenicity into polyolefin‐based membranes has evoked much attention, which can be achieved by coating hydrophilic polymers. Therefore, it is necessary to modify the roughness and hydrophilicity of polyolefin‐based membranes to enhance the coating ability. In this paper, three kinds of plasma methods, including inductively coupled (ICP) plasma, radio frequency low pressure (RFP) plasma and atmospheric dielectric barrier discharge (DBD) plasma, were used to modify the surface of the polyethylene (PE), polypropylene (PP) and polyester‐polypropylene (PET–PP) membranes. The surface roughness of the plasma‐modified PE, PP and PET–PP films was investigated by scanning electron microscopy (SEM) and atomic force microscope (AFM). The polar functional groups of films were observed by energy dispersive spectrometer (EDX) and X‐ray photoelectron spectroscopy (XPS). Besides, the hydrophilicity of the plasma‐modified PE, PP and PET–PP films was evaluated by water contact angle measurement. It was found that the surface roughness and hydrophilicity of plasma‐modified PE, PP and PET–PP films increased with the generation of oxygen‐containing functional groups (i.e. C―O, and C?O). The PET–PP membranes were treated by RFP plasma at different processing powers and times. These results indicated that plasma is an effective way to modify films, and the treatment time and power of plasma had a certain accumulation effect on the membranes' hydrophilicity. As for the roughness and hydrophilicity, the DBD plasma modifies the PE film, which is the optimum way to get the ideal roughness and hydrophilicity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Films of poly(L-lactide) [i.e., poly(L-lactic acid) (PLLA)] and L-lactide copolymers with glycolide [P(LLA-GA)(81/19)], epsilon-caprolactone [P(LLA-CL)(82/18)], D-lactide [P(LLA-DLA)(95/5), (77/23), and (50/50)] were prepared and a comparative study on the effects of comonomer type and content on alkaline and proteinase K-catalyzed hydrolyses of the films was carried out. The hydrolyzed films were investigated using gravimetry (weight loss and water absorption), differential scanning calorimetry (DSC), polarimetry, and gel permeation chromatography (GPC). To exclude the effects of molecular weight and crystallinity on the hydrolysis, the films were prepared from polymers having similar molecular weights and made amorphous by melt-quenching. It was found that incorporation of hydrophilic glycolide units in L-lactide chains raises the alkaline and enzymatic hydrolyzabilities, whereas incorporation of hydrophobic epsilon-caprolactone units in L-lactide chains reduces the alkaline and enzymatic hydrolyzabilities. On the other hand, incorporation of D-lactide units with the same hydrophilicity of L-lactide units increases the alkaline hydrolyzability but decreases the enzymatic hydrolyzability. The alkaline hydrolyzability of the films of L-lactide copolymers with different kinds of comonomers and P(LLA-DLA) with different D-lactide unit contents can be closely related to their hydrophilicity. On the other hand, the enzymatic hydrolyzability of L-lactide copolymer films with different kinds of comonomers is mainly determined by hydrophilicity, while that of P(LLA-DLA) films is determined by the averaged L-lactyl and D-lactyl unit sequence lengths. The catalytic effect of proteinase K relative to that of alkali on the hydrolysis of P(LLA-DLA)(77/23) and P(LLA-GA)(81/19) films normalized by that of PLLA was lower than unity, whereas the normalized relative catalytic effect of proteinase K on the hydrolysis of P(LLA-CL)(82/18) film was higher than unity, meaning that despite low absolute alkaline and enzymatic hydrolyzability of the P(LLA-CL)(82/18) film, the catalytic effect of proteinase K may be maintained for this copolymer film, probably because of its blocky structure.  相似文献   

16.
We attempted to use micropit plates as a silicon mold in order to control the surface structures of gelatin films. The three-dimensional micropit plates, fabricated with micromachining technology, have uniform quadrangular or circular pits with side lengths or diameters from 25-400 microm and depths of 40 microm. The micropit plates were originally hydrophilic because of silanol groups on the surface. In order to facilitate peeling the aqueous gelatin film from the micropit plates, the plate was therefore modified with hexamethyldisilazane. Gelatin films with precisely microfabricated structures on the surfaces were obtained by using the modified micropit plates. The release behavior of the films with different surface structures was examined.  相似文献   

17.
Organophilic montmorillonite was obtained by the reaction of montmorillonite (MON) and distearyldimethylammonium chloride (DSAC). The modified clay and poly(l-lactide), (PLLA), were solvent-cast blended using chloroform as cosolvent. The structure and properties of the PLLA-clay blends were investigated. Thermal measurements revealed that cold crystallization took place in the as-cast PLLA, and that the clay served as a nucleating agent. From small and wide-angle x-ray scattering measurements, it was found that silicate layers forming the clay could not be individually well dispersed in the PLLA-clay blends prepared by the solvent-cast method. In other words, the clay existed in the form of tactoids, which consist of several stacked silicate monolayers. However, these tactoids formed a remarkable geometrical structure in the blend films. That is, their surfaces lay almost parallel to the film surface, and were stacked with the insertion of PLLA crystalline lamellae in the thickness direction of the film. During the blend drawing process, fibrillation took place with the formation of plane-like voids developed on the plane parallel to the film surface. Furthermore, delamination of the silicate layers did not occur even under the application of a shearing force. Finally, Young's modulus of the blend increased with the addition of a small amount of the clay. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
We report, using an electron spectrometer equipped with both monochromatized Al Kα and unmonochromatized Mg Kα sources, the quantitative characterization of the surface content, hydrolysis ratio, and condensation degree of polyalkoxysiloxane segregated to the surface of a polyurethane crosslinked film consisting of acryl polyol, polyisocyanate, and polyalkoxysiloxane. Unmonochromatized Mg Kα X‐ray irradiation extremely accelerated the decomposition of alkoxy groups of polyalkoxysiloxane. The surface content and hydrolysis ratio were determined from C 1s, Si 2p, and N 1s spectral intensities measured with monochromatized Al Kα X rays after decomposition by unmonochromatized Mg Kα X‐ray irradiation. The condensation degree was determined by the kinetic energy of the silicon KLL Auger electron after decomposition. We applied the established characterization method for a polyurethane film containing polyalkoxysiloxane. After 20 days, the surface content of polyalkoxysiloxane was greater than 60 wt %, the hydrolysis ratio ranged from 0.8 to 0.95, and the higher hydrolysis ratio resulted in a larger condensation degree. The hydrophilicity of the film surface became higher as the surface content and hydrolysis ratio increased, and the crack density became higher as the condensation degree increased. A method for characterizing the practical properties of coating film surfaces containing polyalkoxysiloxane was established. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2917–2926, 2002  相似文献   

19.
To improve the biocompatibility of poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) film, a technique based on Ar plasma pretreatment and UV-induced grafting polymerization was used to immobilize carboxymethyl chitosan (CMCS) on the FEP film surfaces. Initially Ar plasma was used to treat FEP film. Then, plasma treated FEP film was modified via UV-induced grafting polymerization with hydrophilic acrylic acid (AAc) monomer. The following immobilization of CMCS on the FEP-pAAc surface was carried out via an amidation reaction. The change of chemical composition and surface morphology of FEP film were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Results of water contact angles measurement showed that the hydrophilicity of the surface has improved significantly after surface modification. Furthermore, methyl thiazolyl tetrazolium (MTT) assay and cell morphology analysis confirmed that mouse fibroblasts (L929 cells) attachment and proliferation were improved remarkably on the modified FEP surface. These results suggest that CMCS were successfully employed to surface engineering FEP film, and enhanced its cell biocompatibility. The approach presented here may be exploited for surface modification of biomaterials.  相似文献   

20.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号