首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
 The possibilities and limitations of electron probe microanalysis and scanning electron microscopy at reduced accelerating voltages are summarised. The application of electron probe microanalysis to the analysis of thin coatings in the boron–nitrogen–carbon composition triangle is discussed. Experimental details are given. The potential of modern scanning electron microscopes, operated at low voltages and high magnifications, for materials development and problem solving is illustrated. Examples shown are from fluorocarbon coatings, ultrafiltration membranes, membrane fouling and casings for meat. Experimental details are given.  相似文献   

2.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

3.
A model approach describing restricted relaxation of structural fragments of a hydrogen-bond network of water upon the localization of an excess electron is proposed. With the use of nonempirical calculations of water clusters comprising up to 16 molecules, the vertical energies of electron detachment from anionic water structures and the energies of electron hydration by neutral systems are estimated. Based on these data and analysis of the electron density distribution of the highest occupied molecular orbital of the anions, extrapolation estimates of the photoionization energy of the electron removal from the bulk and surface layers of water (4.4 ± 0.2 and 3.0 ± 0.2 eV respectively) and the electron hydration energy (2.6 ± 0.2 eV) are obtained.  相似文献   

4.
The general properties of new models of the electronic spaces based on the notion of (p, q)‐sheaves are studied. The interrelation between simple sheaves and density operators is established. Explicit expressions for the transformed reduced Hamiltonians in terms of the standard creation‐annihilation operators are presented. The general scheme of parametrization of p‐electron states by κ‐electron means (κ = 2, 3, …) is described and studied in detail for the case of sheaves induced by κ‐electron wave functions. It is demonstrated that, under certain conditions, a p‐electron problem may be reformulated as the eigenvalue problem in κ‐electron space equipped with certain p‐electron metric. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

5.
NMR reaction following experiments were used to find optimal conditions for the barbituric acid double addition to aromatic and heteroaromatic carboxaldehydes. It was established that aromatic aldehydes with electron‐donating substituents such as hydroxy, methoxy, and dimethylamino produce only the single addition barbituric acid adduct (barbituric acid benzylidenes). If these electron‐donating substituents are transformed into electron‐withdrawing substituents by virtue of protonation (NMe2 to NHMe2+) then the double barbituric acid adduct becomes the sole product of the reaction. This is also true regardless of the reaction media if strong electron‐withdrawing substituents (such as a nitro group) are present. Considering that the reactive species for nitrogen containing aromatic heterocycles are actually the conjugated acids (electron deficient molecule) only the double barbituric acid adducts are isolated. All synthetic procedures presented are applicable to multi‐gram scale preparations of double barbituric acid adducts.  相似文献   

6.
Experimental and theoretical results are reviewed concerning the photon polarization and spin asymmetry in the elementary process of bremsstrahlung. In electron–photon coincidence experiments using an unpolarized primary beam (300 keV) the electron–nucleus bremsstrahlung was found to be almost completely linearly polarized. The same behavior was found in electron–electron bremsstrahlung. By using a transversely polarized electron beam the photon emission asymmetry was measured for fixed direction of the outgoing electrons.  相似文献   

7.
"ZnO ellipsoid-like structures assembled by ZnO nanrods were fabricated from common ZnO whiskers by autoclave tests and pyrolysis integrated method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and high resolution transmission electron microscopy studies reveal ZnO ellipsoidal structures are single-crystals and formed from direct oriented attachment of nanorods. Raman and room temperature photoluminescence spectra are also discussed."  相似文献   

8.
Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c‐type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105 e s?1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+/Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.  相似文献   

9.
It is proposed that low energy secondary electrons produced in medium energy electron impact experiments may play an important role in the excitation of triplet states even at low sample gas densities. A model calculation is carried out which shows that the population of the 43S, S3P and 43D triplet states in He from secondary electron excitation can be comparable to the population of these states by direct excitation at an incident electron energy of 1000 eV and sample gas pressures as low as 10?3 torr. The model calculations show that the secondary electron mechanism becomes more important as the incident energy increases and that the produced populations are of a similar magnitude for the 33P and 43D states which in turn are about a factor of 4 larger than the population found for the 43S state. The results indicate that the effect of secondary electron excitation in careful experimental measurements of electron impact total triplet state cross sections may have to be considered when incident electron excitation energies in the range of 1 keV or higher are used.  相似文献   

10.
We explore the possibility that a 3‐electron‐2‐center bonding exists in cycloimmonium ylides. To detect this bonding in a polyatomic system, 3‐electron‐1‐hole density operators, characterizing a Pauling 3‐electron bond, are used in the framework of second quantization formalism. The weights of 3‐electron resonance structures are calculated and compared with the weights of 2‐electron structures for the ylide bond of pyridinium dicyanomethylide; the correlations of (↑↓) and (↑) electronic events, involved in the 3‐electron resonance structures, are also investigated. The calculations are performed in various approximation levels, and both orthogonal and nonorthogonal natural atomic orbitals are adopted. All calculations show that a 3‐electron bond exists between N and C atoms of ylide bond, but this bonding is not extended in C atoms of the pyridinium group. The interactions of α,β electrons (at the configuration interaction [CI] level) increase the localization of electrons, the weights of 3‐electron resonance structures, and thus the probability for 3‐electron bonding. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

11.
The electron temperature and the electron density of plasmas created by the “Torche à Injection Axiale” (TIA) are determined using Thomson scattering. In the plasma with helium as the main gas, temperatures of around 25 000 K and densities of between 0.64 and 5.1 × 1020m−3 are found. In an argon plasma the electron temperature is lower and the electron density is higher: 17 000 K and around 1021 m−3 respectively. From these results it can be established that the ionisation rates of both plasmas are much larger than the recombination rates, which means that the plasmas are far from Saha equilibrium. However, deviations from a Maxwell electron energy distribution function, as reported for the “Microwave Plasma Torch” (MPT), are not found in the TIA. The excitation and ionisation power of the TIA appears to be stronger than that of the MPT.  相似文献   

12.
An exactly soluble base problem for atomic systems is presented which approximates the atomic Hamiltonian as a sum of identical one‐electron operators. The eigenfunctions of the one‐electron operator consist of a radial function multiplied by a spherical harmonic. Energies for many‐electron atoms are found by summing the one‐electron energy eigenvalues according to the Pauli principle. These energies are rigorous lower bounds to the exact energies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The electron localization measure proposed by Becke and Edgecombe is shown to be related to the covariance of the electron pair distribution. Just as with the electron localization function, the local covariance does not seem to be, in and of itself, a useful quantity for elucidating shell structure. A function of the local covariance, however, is useful for this purpose. A different function, based on the hyperbolic tangent, is proposed to elucidate the shell structure encapsulated by the local covariance; this function also seems to work better for the electron localization measure of Becke and Edgecombe. In addition, we propose a different measure for the electron localization that incorporates both the electron localization measure of Becke and Edgecombe and the Laplacian of the electron density; preliminary indications are that this measure is especially good at elucidating the shell structure in valence regions. Methods for evaluating electron localization functions directly from the electron density, without recourse to the Kohn-Sham orbitals, are discussed.  相似文献   

14.
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.  相似文献   

15.
An optical emission spectroscopy method for determination of electron temperature, electron density and gas temperature is developed and applied for diagnostics of inductively-driven argon discharges in a cylindrical geometry. The discharges are maintained at frequency 27 MHz, applied power varied in the limits P = (90 – 160) W and gas pressure in the range p = (1.1 – 117.3) Pa. The method combines measurements of emission spectral line intensities and profile broadenings with a collisional-radiative model of argon plasma at low pressure. The model is employed for investigation of the plasma kinetics governing the population densities of 3p54s and 3p54p argon configuration levels, treated separately. In the numerical calculations the electron density and electron temperature are varied whereas the values of the third plasma parameter — the gas temperature — are involved as obtained data from the experiments. Comparison of the experimental results of the line-intensity ratios with those calculated by the model yields the values of the electron density and temperature. The dependence of the electron temperature, electron density and gas temperature on the discharge conditions is obtained and discussed in the study.  相似文献   

16.
A very diffuse, but spatially confined, electron trapped in a dipole–bound state of a polar molecule provides an excellent target for testing the interaction of a localized electron positioned outside the molecular frame of its host molecule with other atomic or molecular systems. In this work we use ab initio calculations to investigate systems where a dipole–bound electron attached to a uracil molecule is interacting with an N2 molecule and an Ar atom. Neither of the two systems forms a stable anion and in the aducts they form with the dipole–bound electron the electron becomes suspended between the uracil molecule and Ar or N2. Calculations are performed to determine the vertical electron detachment energies of these anions and to determine the molecular rearrangements occurring when the excess electron is removed from them.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

17.
Abstract— This review paper reports the data on the role of long range electron tunneling in photosynthetic and model systems. The main papers concerned with elucidation mechanisms and kinetical peculiarities of electron transfer in reaction centers of bacteria and green plants are considered. The paper reviews the articles on long range electron transfer in reactions of metalloporphyrins—synthetic analogs of the main natural pigment of photosynthesis, chlorophyll. Liquid and solid phase redox reactions of electronically excited porphyrin molecules, intramolecular and photosensitized electron transfer processes are considered.  相似文献   

18.
We propose a new type of capacitive plasma source with a mesh grid to solve the problems of previous low pressure discharges, the inability to control the electron density and temperature independently, i.e. just one value of electron temperature is possible for a given electron density. While varying the grid bias and the discharge current, various electron temperatures are possible for a given electron density, and the electron density and temperature can be controlled from 4 × 108 cm-3 to 1 × 1010cm-3 and from 1 to 4 eV, respectively.  相似文献   

19.
EPR spectroscopy has been used to investigate spontaneous and/or photo-induced electron transfer between adsorbed organic molecules and the mesoporous aluminosilicate MCM-41 host. Spontaneous electron transfer occurs from the host to electron acceptor molecules with sufficiently favourable reduction potentials (TCNE, TCNQ, 1,4-benzoquinone, 1,4-naphthaquinone and 1,4-anthraquinone), provided the MCM-41 contains aluminium and the radical anion yield correlates with the aluminium content of the host. The semiquinone radical anions are interacting strongly with exposed Al3+ sites, whereas the TCNE and TCNQ radical anions are loosely bound and can be washed from the host. Radical cation formation is observed when electron donor molecules with favourable oxidation potentials are adsorbed in MCM-41 containing aluminium, and the radical cations formed interact with exposed Al3+ sites. This work shows that aluminium-containing MCM-41 contains both electron donating and electron accepting sites which may intervene in intra-molecular charge separation processes in adsorbed organic molecules.  相似文献   

20.
Gas-phase bimolecular and clustering reactions of acetonitrile in Xe, Kr, Ar, Ne and He were studied at high chemical ionization pressures in the new coaxial ion source at Auburn. With electron energies near the ionization threshold, the mass spectra are exceedingly simple and are comprised of [CH4CH]+ and clusters of [CH4CN]+ with various ligands such as H2O and CH3CN. At higher electron energies many other peaks appear. The intensities of the new peaks depend upon the ionization potential of the charge transfer gas, the ionizing electron energy and the ion source conditions, and are due to reactions of fragment ions. Residence time distributions at electron energies above the ionization threshold (∼ 30 eV) demonstrate that two molecular structures are present in the ion beam at m/z 42, one presumably is protonated acetonitrile ([CH3CNH]+) while the evidence indicates that the second species does not contain acidic hydrogens. With ionizing electron energies near threshold (∼ 10. 5 eV) only one structure is observed. Studies with electron energies near the ionization threshold under high-pressure chemical ionization conditions result in greatly simplified mass spectra and are possible only because of the coaxial geometry of the ion source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号