首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new chemosensor molecule 1 based on a ferrocene-imidazophenanthroline dyad, effectively recognizes aqueous hydrogenpyrophosphate and the organic anions ADP and ATP through three different channels. A cathodic shift of the ferrocene/ferrocenium oxidation wave (Delta E 1/2 ranging from -130 mV for hydrogenpyrophosphate and fluoride to -40 mV for ADP). A progressive red-shift of the absorption bands and/or appearance of a new low energy band at 314-319 nm. These changes in the absorption spectra are accompanied by color changes from pale yellow to orange or pink, which allow the potential for "naked eye" detection. The emission spectrum (lambda exc = 390 nm) undergoes an important chelation-enhanced fluorescence effect (CHEF = 50) in the presence of 2.5 equiv of hydrogenpyrophosphate anion and with a large excess of fluoride anion (CHEF = 114). Interestingly, the emission spectrum obtained at different excitation energy (lambda exc = 340 nm) in the presence of AcOH acid is red-shifted and not only perturbed by the hydrogenpyrophosphate anion (CHEF = 71) but also with the organic anions ATP (CHEF = 25), ADP (CHEF = 15), and the dihydrogenphosphate (CHEF = 25). The stable heterobimetallic ruthenium (II) complex 2 selectively senses the chloride anion over other anions examined through two channels: cathodic redox shift (Delta E 1/2 = -80 mV) of the Fe(II)/Fe(III) redox couple keeping the oxidation wave of the ruthenium (II) center unchanged and a significant red emission enhancement (CHEF = 30). (1)H and (31)P NMR studies as well as DFT calculations have been carried out to get information about which molecular sites are involved in bonding. About the deprotonation/coordination dualism, the combined electrochemical, absorption, emission, and NMR data strongly support that fluoride anion induces only deprotonation, anions dihydrogenphosphate, ATP, and ADP from hydrogen-bonded complexes and formation of hydrogen-bonded complex between receptor 1 and hydrogenpyrophosphate anion and deprotonation proceed simultaneously. In regards to receptor 2, all available data (electrochemical, absorption, emission, and 1H NMR) strongly support the formation of a [2. Cl ( - ) ] hydrogen-bonded complex.  相似文献   

2.
The title compound (1) was studied at platinum and gold electrodes in acetonitrile. A reversible oxidation peak occurs at +0.30 V vs the standard potential for ferrocenium ion/ferrocene. This process is followed by a second irreversible anodic peak that is due to the oxidation of the initially formed radical cation to the dication. The principal ultimate product of the first oxidation, the conjugate acid of 1, is also oxidized over the range of potentials corresponding to the second anodic peak. The rate of disappearance of the radical cation of 1 has been determined by cyclic voltammetry. The results are best interpreted in terms of parallel pseudo-first-order decay (k(1) = 0.6 s(-)(1)) and second-order reactions. The first of these second-order reactions is either proton transfer from the radical cation to neutral 1 or hydrogen atom abstraction by the radical cation from neutral 1, reactions that give the same products (k(2) = 100 M(-)(1) s(-)(1)) and are kinetically indistinguishable. The other second-order reaction is the hydrogen-atom-transfer disproportionation of the radical cation giving the conjugate acid of 1 and the immonium ion (k(3) = 100 M(-)(1) s(-)(1)). Both second-order processes must be included to account for the results. The present results are thought to be the first experimental evidence for the occurrence of hydrogen-atom-transfer disproportionation of amine radical cations.  相似文献   

3.
Zhu QY  Liu Y  Lu W  Zhang Y  Bian GQ  Niu GY  Dai J 《Inorganic chemistry》2007,46(24):10065-10070
A protonated bifunctional pyridine-based tetrathiafulvalene (TTF) derivative (DMT-TTF-pyH)NO3 and a copper(II) complex Cu(acac)2(DMT-TTF-py)2 have been obtained and studied. Electronic spectra of the protonated compound show a large ICT (intramolecular charge transfer) band shift (Deltalambda=136 nm) compared with that of the neutral compound. Cyclic voltammetry also shows a large shift of the redox potentials (DeltaE1/2(1)=77 mV). Theoretical calculation suggests that the pyridium substituent is a strong pi-electron acceptor. Crystal structures of the protonated compound and the metal complex have been obtained. The dihedral angle between least-squares planes of the pyridyl group and the dithiole ring might reflect the intensity of the ICT effect between the TTF moiety and the pyridyl group. It is also noteworthy that the TTF moiety could be oxidized to TTF2+ dication by Fe(ClO4)(3).6H2O when forming a metal complex, while the protonated TTF derivative can only be oxidized to the TTF*+ radical cation by Fe(ClO4)(3).6H2O even with an excess amount of the Fe(III) salt, which can be used to control the oxidation process to obtain neutral TTF, TTF*+ radical cation, or TTF2+ dication.  相似文献   

4.
The guanidine unit in the guise of 2-aminoimidazole in the new structural motif 2-arylamino-1,3-diaza[3]ferrocenophane 4 acts as a binding site for anions. The electrochemical behavior of this compound has been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and was found to exhibit a quasi reversible oxidation peak, associated to the Fe(II)/Fe(III) redox couple (Ep = 440 mV), and a non-reversible oxidation wave (Ep = 817 mV), probably associated to the oxidation of the C═N unit present in the guanidine bridge. Recognition of AcO(-), PhCO(2)(-), F(-), Cl(-), and Br(-) anions by the free receptor and the less basic anions Br(-), Cl(-), and NO(3)(-) by its monoprotonated form takes place by unusual redox-ratiometric measurements and spectroscopic ((1)H NMR and UV-vis) changes.  相似文献   

5.
A series of iron(III) complexes based on the tetradentate ligand 4-((1-methyl-1H-imidazol-2-yl)methyl)-1-thia-4,7-diazacyclononane (L) has been synthesized, and their solution properties investigated. Addition of FeCl(3) to methanol solutions of L yields [LFeCl(2)]FeCl(4) as a dark red solid. X-ray crystallographic analysis reveals a pseudo-octahedral environment around iron(III) with the three nitrogen donors of L coordinated facially. Ion exchange reactions with NaPF(6) in methanol facilitate chloride exchange resulting in a different diastereomer for the [LFeCl(2)](+) cation. X-ray analysis of [LFeCl(2)]PF(6) finds meridional coordination of the three nitrogen donors of L. Electrochemical studies of [LFeCl(2)](+) in acetonitrile display a single Fe(III)/(II) reduction potential at -280 mV versus ferrocenium/ferrocene. In methanol, a broad cathodic wave is observed because of partial exchange of one chloride for methoxide with half-potentials of -170 mV and -440 mV for [LFeCl(2)](+/0) and [LFeCl(OCH(3))](+/0), respectively. The equilibrium constants for chloride exchange are 7 × 10(-4) M(-1) for Fe(III) and 2 × 10(-8) M(-1) for Fe(II). In aqueous solutions chloride exchange yields three accessible complexes as a function of pH. Strongly acidic conditions yield the aqua complex [LFeCl(OH(2))](2+) with a measured pK(a) of 3.8 ± 0.1. Under mildly acidic conditions, the μ-OH complex [(LFeCl)(2)(OH)](3+) with a pK(a) of 6.1 ± 0.3 is obtained. The μ-oxo complex [(LFeCl)(2)(O)](2+) is favored under basic conditions. The diiron Fe(III)/Fe(III) complexes [(LFeCl)(2)(OH)](3+) and [(LFeCl)(2)(O)](2+) can be reduced by one electron to the mixed valence Fe(III)/Fe(II) derivatives at -170 mV and -390 mV, respectively. From pH dependent voltammetric studies, the pK(a) of the mixed valent μ-OH complex [(LFeCl)(2)(OH)](2+) is calculated at 10.3.  相似文献   

6.
The condensation reactions between (4-amino-2,6-dichlorophenyl)bis(2, 4,6-trichlorophenyl)methyl radical and acetylacetone or 1, 4-bis(5-methyl-2-thienyl)-1,4-butanedione yield [2,6-dichloro-4-(2, 5-dimethyl-1-pyrrolyl)phenyl]bis(2,4,6-trichlorophenyl)methyl radical (3(*)()) and [2,6-dichloro-4-[2, 5-bis(5-methyl-2-thienyl)-1-pyrrolyl]phenyl]bis(2,4, 6-trichlorophenyl)methyl radical (4(*)()), respectively. EPR studies of both radicals 3(*)() and 4(*)() in CH(2)Cl(2) solution suggest a weak electron delocalization with coupling constant values of 1.25 and 1.30 G, respectively, with the six aromatic hydrogens. Their electrochemical behavior was analyzed by cyclic voltammetry. Both radicals show reversible reduction processes at E degrees = -0.69 V and -0.61 V versus SSCE, respectively, and anodic peak potentials at E(p)(a) = 1.10 and 0.72 V, respectively, versus SSCE at a scan rate (nu) of 200 mV s(-)(1), being reversible for radical 4(*)(). X-ray analysis of radical 3(*)() shows a high value (65 degrees ) of the dihedral angle between the 2,5-dimethylpyrrolidyl moiety and the phenyl ring. Smooth oxidation of radical 4(*)() in CH(2)Cl(2) containing trifluoroacetic acid gives an ionic diradical species with a weak electron interaction (|D/hc| = 0.0047 cm(-)(1)). A Curie plot of the Deltam(s)() = +/-2 signal intensity versus the inverse of the absolute temperature in the range between 4 and 70 K suggests a triplet or a nearly degenerate singlet-triplet ground state.  相似文献   

7.
The redox electrochemistry of hydroquinone and Cu2+-, Ni2+-, and Fe3+-hydroquinone complexes immobilized at the SAM interface has been studied in aqueous solutions with pH 5 to 12 using cyclic voltammetry. Self-assembled monolayers were constructed with terminal hydroquinone residues designed to model marine adhesive proteins that use the DOPA (3,4-dihydroxyphenylalanine) moiety. Coordination of metal to the hydroquinone group results in a shift to the ligand oxidation potential, with the value for Delta E p,a dependent on the solution pH and identity of the metal. Cu2+ shifts the hydroquinone oxidation by -285 mV (pH 8.8), and Ni2+ by -194 mV (pH 9.16). The hydroquinone oxidation was shifted by -440 mV at pH 5 for Fe3+ solutions examined up to pH 7. By contrast, reduction of the quinone is unperturbed by the presence of Cu2+, Ni2+, and Fe3+ ions. Implications of these results to the mechanism of marine adhesion are discussed.  相似文献   

8.
Simple cationic sandwich complexes that contained alkyl- or halogen substituents provided ionic liquids (ILs) with the bis(perfluoroalkanesulfonyl)imide anion. Ferrocenium- and cobaltocenium ILs [M(C(5)H(4)R(1))(C(5)H(4)R(2))][Tf(2)N] (M=Fe, Co) and arene-ferrocenium ILs [Fe(C(5)H(4)R(1))(C(6)H(5)R(2))][Tf(2)N] were prepared and their physical properties were investigated. A detailed comparison of their thermal properties revealed the effects of molecular symmetry and substituents on their melting points. Their viscosity increased on increasing the length of the substituent on the cation and the perfluoroalkyl chain length on the anion. Upon cooling, ILs with low viscosities exhibited crystallization, whereas those with higher viscosities tended to exhibit glass transitions. Most of these salts showed phase transitions in the solid state. A magnetic-switching phenomenon was observed for the paramagnetic ferrocenium IL, which was associated with a liquid/solid transformation, based on the magnetic anisotropy of the ferrocenium cation. (57)Fe M?ssbauer spectroscopy was applied to [Fe(C(5)H(4)nBu)(2)][Tf(2)N] to investigate the vibrational behavior of the iron atom in the crystal and glassy states of the ferrocenium IL.  相似文献   

9.
A series of ferrocene-containing rhodium complexes of the type [Rh(FcCOCHCOR)(cod)] (cod = 1,5-cyclooctadiene) with R = CF(3), 1, (E(pa)(Rh) = 269; E(o)'(Fc) = 329 mV vs. Fc/Fc(+)), CCl(3), 2, (E(pa) = 256; E(o)' = 312 mV), CH(3), 3, (E(pa) = 177; E(o)' = 232 mV), Ph = C(6)H(5), 4, (E(pa) = 184; E(o)' = 237 mV), and Fc = ferrocenyl = (C(5)H(5))Fe(C(5)H(4)), 5, (E(pa) = 135; E(o)'(Fc1) = 203; E(o)'(Fc2) = 312 mV), have been studied electrochemically in CH(3)CN. Results indicated that the rhodium(I) centre is irreversibly oxidised to Rh(III) in a two-electron transfer process before the ferrocenyl fragment is reversibly oxidized in a one-electron transfer process. The peak anodic (oxidation) potential, E(pa), (in V vs. Fc/Fc(+)) of the rhodium core in 1-5 relates to k(2), the second-order rate constant for the substitution of (FcCOCHCOR)(-) with 1,10-phenanthroline in [Rh(FcCOCHCOR)(cod)] to form [Rh(phen)(cod)](+) in methanol at 25 °C with the equation lnk(2) = 39.5 E(pa)(Rh) - 3.69, while the formal oxidation potential of the ferrocenyl groups in 1-5 relates to k(2) by lnk(2) = 40.8 E(o)'(Fc)-6.34. Complex 4 (IC(50) = 28.2 μmol dm(-3)) was twice as cytotoxic as the free FcCOCH(2)COPh ligand having IC(50) = 54.2 μmol dm(-3), but approximately one order of magnitude less toxic to human HeLa neoplastic cells than cisplatin (IC(50) = 2.3 μmol dm(-3)).  相似文献   

10.
The newly synthesized dinuclear complex [Fe(III)(2)(μ-OH)(2)(bik)(4)](NO(3))(4) (1) (bik, bis(1-methylimidazol-2-yl)ketone) shows rather short Fe···Fe (3.0723(6) ?) and Fe-O distances (1.941(2)/1.949(2) ?) compared to other unsupported Fe(III)(2)(μ-OH)(2) complexes. The bridging hydroxide groups of 1 are strongly hydrogen-bonded to a nitrate anion. The (57)Fe isomer shift (δ = 0.45 mm s(-1)) and quadrupole splitting (ΔE(Q) = 0.26 mm s(-1)) obtained from Mo?ssbauer spectroscopy are consistent with the presence of two identical high-spin iron(III) sites. Variable-temperature magnetic susceptibility studies revealed antiferromagnetic exchange (J = 35.9 cm(-1) and H = JS(1)·S(2)) of the metal ions. The optimized DFT geometry of the cation of 1 in the gas phase agrees well with the crystal structure, but both the Fe···Fe and Fe-OH distances are overestimated (3.281 and 2.034 ?, respectively). The agreement in these parameters improves dramatically (3.074 and 1.966 ?) when the hydrogen-bonded nitrate groups are included, reducing the value calculated for J by 35%. Spontaneous reduction of 1 was observed in methanol, yielding a blue [Fe(II)(bik)(3)](2+) species. Variable-temperature magnetic susceptibility measurements of [Fe(II)(bik)(3)](OTf)(2) (2) revealed spin-crossover behavior. Thermal hysteresis was observed with 2, due to a loss of cocrystallized solvent molecules, as monitored by thermogravimetric analysis. The hysteresis disappears once the solvent is fully depleted by thermal cycling. [Fe(II)(bik)(3)](OTf)(2) (2) catalyzes the oxidation of alkanes with t-BuOOH. High selectivity for tertiary C-H bond oxidation was observed with adamantane (3°/2° value of 29.6); low alcohol/ketone ratios in cyclohexane and ethylbenzene oxidation, a strong dependence of total turnover number on the presence of O(2), and a low retention of configuration in cis-1,2-dimethylcyclohexane oxidation were observed. Stereoselective oxidation of olefins with dihydrogen peroxide yielding epoxides was observed under both limiting oxidant and substrate conditions.  相似文献   

11.
Electrochemical and spectroelectrochemical properties of five cobalt(III) acetate complexes [CoIII3(mu3-O)(CH3CO2)5(OR)(py)3][PF6] are described, where py=pyridine and R=OCCH3 (A), H (B), CH3 (C), CH2CH=CH2 (D), and CH2C6H5 (E). Each is reduced irreversibly as observed by cyclic voltammetry at room temperature and at -40 degrees C in acetonitrile at scan rates up to 20 V s(-1), but oxidized reversibly to a mixed-valence Co(III)2Co(IV) species at approximately 1.23 V vs the ferrocenium/ferrocene couple. Controlled potential coulometry confirmed a one-electron-oxidation process. Spectroelectrochemical oxidation of A at 5 degrees C showed isosbestic points in the electronic absorption spectrum that showed the oxidized complex to be stable in solution for at least 1 h.  相似文献   

12.
Reaction of trans-(dmpe) 2CrCl2 (dmpe=1,2-bis(dimethylphosphino)ethane) with one equivalent of LiCCSiMe3 and one equivalent of nBuLi in THF under a dinitrogen atmosphere affords dark orange trans,trans-[(Me 3SiCC)(dmpe)2Cr]2(micro-N2).hexane (1). Under similar conditions but in the absence of acteylide ligand, the reaction of trans-(dmpe)2CrCl2 with 2 equivalents of nBuLi yields the previously characterized complex trans-(dmpe)2Cr(N2)2 (2), while the reaction of trans-(dmpe)2CrCl2 with 2 equivalents of LiCCSiMe3 in THF yields trans-(dmpe)2Cr(CCSiMe3)2 (3). Compound 3 can also be synthesized by irradiating a mixture of trans-(dmpe)2CrMe2 and HCCSiMe3 or by reduction of HCCSiMe3 with compound 2. The magnetic properties, electrochemistry, and crystal structure of trans,trans-[(Me3SiCC)(dmpe)2Cr]2(micro-N2) are consistent with the complex containing two CrI ions bridged by a neutral N2 moiety, with a 1.178(10) A N[TRIPLE BOND]N bond distance. For complex 1 redox processes centered at E1/2=-1.69 V (DeltaEp=185 mV) and -1.43 V (DeltaEp=182 mV) versus Fe(Cp)2/Fe(Cp)2+ are assigned to the CrICrI/CrICrII and CrICrII/CrIICrII couples, respectively. For trans-(dmpe)2Cr(CCSiMe3)2 a reversible couple assigned as the CrII/III couple was observed at -1.59 V (DeltaEp=242 mV) versus Fe(Cp)2/Fe(Cp)2+. The dinuclear CrI-dinitrogen complex 1 has a room temperature magnetic moment of 2.77 microB while compound 3 displays a moment of 2.55 microB. Density-functional theory calculations performed on a model compound of 1, namely, trans,trans-[(HCC)(dpe)2Cr]2(micro-N2) (dpe=diphospinoethane), indicate that oxidation of the molecule should result in weakening of the dinitrogen triple bond.  相似文献   

13.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   

14.
A series of mixed-valent (MV) complexes [(FeCp)2(mu-C10H6(BPh)2)]+X ([1+]X; X=I 5, PF6, SbF6, B(C6F5)4) were prepared by oxidation of diboradiferrocene [(FeCp)2(mu-C10H6(BPh)2)] (1) with I 2, AgPF6, and AgSbF6, respectively, and through anion exchange of the I 5(-) salt with [Li(Et2O)x][B(C6F5)4] in the case of X=B(C6F5)4. The MV state of the cation was investigated in solution by multinuclear NMR spectroscopy, CV, and UV/Vis-NIR absorption spectroscopy, and in the solid state by IR spectroscopy, single-crystal X-ray crystallography, and M?ssbauer spectroscopy. The cyclic voltammogram of 1 shows two distinct redox waves with a large redox splitting of Delta E=510 mV in CH2Cl2 and the NIR spectrum for the mono-oxidized species displays an intervalence charge-transfer band at around 1500 to 1700 nm depending on the specific counterion present. The X-ray crystal structures of [1+]X show inversion-symmetric cations with X=I 5 and B(C6F5)4 and unsymmetric valence-trapped structures composed of one ferrocene and one ferrocenium moiety with X=PF6 and SbF6. M?ssbauer data for X=PF6 are consistent with valence trapping at all temperatures between 90 and 343 K. In comparison, fast electron transfer is evident on the M?ssbauer timescale for X=I 5 and temperature-dependent behavior is observed for X=B(C6F5)4. The anion dependence of the X-ray structural and M?ssbauer data is discussed in the context of crystal symmetry and the possibility of static and dynamic disorder effects is considered.  相似文献   

15.
Protonation of p-xylylaminomethylferrocene (1) and n-hexylaminomethylferrocene (2) by HCl and NH(4)PF(6) forms the ferrocenylmethyl(alkyl)ammonium salt. Inclusion of the compounds by dibenzo[24]crown-8 (DB24C8) produces [2]pseudorotaxanes, [(DB24C8)(1-H)](+)(PF(6)) and [(DB24C8)(2-H)](+)(PF(6)), respectively. X-ray diffraction of the former product indicates an interlocked structure composed of the axis and the macrocyclic molecule. Intermolecular N-H...O and C-H...O interactions and stacking of the aromatic planes are observed. [(DB24C8)(1-H)](+)(PF(6)), in the solid state, is characterized by IR spectroscopy and elemental analyses. A similar reaction of 1,1'-bis(p-xylylaminomethyl)ferrocene (3) forms a mixture of [2] and [3]pseudorotaxanes, [(DB24C8)(3-H(2))](2+)(PF(6))(2) and [(DB24C8)(2)(3-H(2))](2+)(PF(6))(2). The latter product having two DB24C8 molecules is isolated and characterized by X-ray crystallography. Formation of these pseudorotaxanes in a CD(3)CN solution is evidenced by (1)H NMR and mass spectrometry. Electrochemical oxidation of 1-3 at 0.4 V (vs Ag(+)/Ag) in the presence of TEMPOH (1-hydroxy-2,2,6,6-tetramethylpiperidine) and DB24C8 affords the corresponding pseudorotaxanes. The ESR spectrum of the reaction mixture indicates the formation of a TEMPO radical in high yield. Details of the conversion of the dialkylamino group of the ligand to the dialkylammonium group are investigated by using a flow electrolysis method linked to spectroscopic measurements. The proposed mechanism for the reaction involves the ferrocenium species, formed by initial oxidation, which undergoes electron transfer from nitrogen to the Fe(III) center, producing a cation radical at the nitrogen. Transfer of hydrogen from TEMPOH to the cation radical and inclusion of the resulting dialkylammonium species by DB24C8 yields the pseudorotaxanes.  相似文献   

16.
With the aim of better understanding the electronic and structural factors which govern electron-transfer processes in porphyrins, the electrochemistry of 29 nickel(II) porphyrins has been examined in dichloromethane containing either 0.1 M tetra-n-butylammonium perchlorate (TBAP) or tetra-n-butylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte. Half-wave potentials for the first oxidation and first reduction are only weakly dependent on the supporting electrolyte, but E(1/2) for the second oxidation varies considerably with the type of supporting electrolyte. E(1/2) values for the first reduction to give a porphyrin pi-anion radical are effected in large part by the electronic properties of the porphyrin macrocycle substituents, while half-wave potentials for the first oxidation to give a pi-cation radical are affected by the substituents as well as by nonplanar deformations of the porphyrin macrocycle. The potential difference between the first and second oxidations (Delta/Ox(2) - Ox(1)/) is highly variable among the 29 investigated compounds and ranges from 0 mV (two overlapped oxidations) to 460 mV depending on the macrocycle substituents and the anion of the supporting electrolyte. The magnitude of Delta/Ox(2) - Ox(1)/ is generally smaller for compounds with very electron-withdrawing substituents and when TBAP is used as the supporting electrolyte. This behavior is best explained in terms of differences in the binding strengths of anions from the supporting electrolyte (ClO(4)(-) or PF(6)(-)) to the doubly oxidized species. A closer analysis suggests two factors which are important in modulating Delta/Ox(2) - Ox(1)/ and thus the binding affinity of the anion to the porphyrin dication. One is the type of pi-cation radical (a proxy for the charge distribution in the dication), and the other is the conformation of the porphyrin macrocycle (either planar or nonplanar). These findings imply that the redox behavior of porphyrins can be selectively tuned to display separate or overlapped oxidation processes.  相似文献   

17.
He C  Lippard SJ 《Inorganic chemistry》2001,40(7):1414-1420
A bis(mu-carboxylato)(mu-1,8-naphthyridine)diiron(II) complex, [Fe2(BPMAN)(mu-O2CPhCy)2](OTf)2 (1), was prepared by using the 1,8-naphthyridine-based dinucleating ligand BPMAN, where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine. The cyclic voltammogram (CV) of this complex in CH2Cl2 exhibited two reversible one-electron redox waves at +296 mV (DeltaE(p) = 80 mV) and +781 mV (DeltaE(p) = 74 mV) vs Cp2Fe+/Cp2Fe, corresponding to the FeIIIFeII/FeIIFeII and FeIIIFeIII/FeIIIFeII couples, respectively. This result is unprecedented for diiron complexes having no single atom bridge. Dinuclear complexes [Fe2(BPMAN)(mu-OH)(mu-O2CPhCy)](OTf)2 (2) and [Mn2(BPMAN)(mu-O2CPhCy)2](OTf)2 (3) were also synthesized and structurally characterized. The cyclic voltammogram of 2 in CH2Cl2 exhibited one reversible redox wave at -22 mV only when the potential was kept below +400 mV. The CV of 3 showed irreversible oxidation at potentials above +900 mV. Diiron(II) complexes [Fe2(BEAN)(mu-O2CPhCy)3](OTf) (4) and [Fe2(BBBAN)(mu-OAc)2(OTf)](OTf) (6) were also prepared and characterized, where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine and BBBAN = 2,7-bis[2-[2-(1-methyl)benzimidazolylethyl]-N-benzylaminomethyl]-1,8-naphthyridine. The cyclic voltammograms of these complexes were recorded. The M?ssbauer properties of the diiron compounds were studied.  相似文献   

18.
Owen TM  Rohde JU 《Inorganic chemistry》2011,50(11):5283-5289
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(?1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.  相似文献   

19.
Anodic oxidation of the important half-sandwich compound CoCp(CO)2, 1, has been studied under gentle electrolyte conditions, e.g., chlorinated hydrocarbons with weakly coordinating anion (WCA) supporting electrolyte anions. The 17-electron cation 1+ produced at E(1/2)(1) = 0.37 V vs FeCp2(0/+) undergoes a surprising reaction with neutral 1 to form the dimer radical cation [Co2Cp2(CO)4] +, 2+, which has a metal-metal bond unsupported by bridging ligands. The dimer radical is oxidized at a slightly more positive potential (E(1/2) = 0.47 V) to the corresponding dication 2(2+). Observation of the oxidation of 2+ is without precedent in confirming a radical-substrate (R-S) dimerization process by direct voltammetric detection of the R-S intermediate, K(eq) = 3 x 10(4) M(-1) for [2+]/[1][1+]. The R-S mechanism and the reaction products have been characterized by voltammetry, electrolysis, fiber-optic IR spectroscopy, and ESR measurements. DFT calculations indicate that removal of an electron from 1 results in rehybridization in 1+, thereby opening the metal center for interaction with the neutral compound 1, which has a relatively basic metal center. The LUMO of the dimer dication 2(2+) is metal-metal antibonding, and its half-occupancy in 2+ results in lengthening of the Co-Co bond from 2.64 A to 3.14 A. Inclusion of solvent in the (COSMO) calculations shows that solvation effects are necessary to account for the fact that E(1/2)(2) > E(1/2)(1). These results show the importance of medium effects in probing the fundamental redox chemistry of half-sandwich metal complexes.  相似文献   

20.
Multidentate naphthyridine-based ligands were used to prepare a series of diiron(II) complexes. The compound [Fe(2)(BPMAN)(mu-O(2)CPh)(2)](OTf)(2) (1), where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine, exhibits two reversible oxidation waves with E(1/2) values at +310 and +733 mV vs Cp(2)Fe(+)/Cp(2)Fe, as revealed by cyclic voltammetry. Reaction with O(2) or H(2)O(2) affords a product with optical and M?ssbauer properties that are characteristic of a (mu-oxo)diiron(III) species. The complexes [Fe(2)(BPMAN)(mu-OH)(mu-O(2)CAr(Tol))](OTf)(2) (2) and [Fe(2)(BPMAN)(mu-OMe)(mu-O(2)CAr(Tol))](OTf)(2) (3) were synthesized, where Ar(Tol)CO(2)(-) is the sterically hindered ligand 2,6-di(p-tolyl)benzoate. Compound 2 has a reversible redox wave at +11 mV, and both 2 and 3 react with O(2), via a mixed-valent Fe(II)Fe(III) intermediate, to give final products that are also consistent with (mu-oxo)diiron(III) species. The paddle-wheel compound [Fe(2)(BBAN)(mu-O(2)CAr(Tol))(3)](OTf) (4), where BBAN = 2,7-bis(N,N-dibenzylaminomethyl)-1,8-naphthyridine, reacts with dioxygen to yield benzaldehyde via oxidative N-dealkylation of a benzyl group on BBAN, an internal substrate. In the presence of bis(4-methylbenzyl)amine, the reaction also produces p-tolualdehyde, revealing oxidation of an external substrate. A structurally related compound, [Fe(2)(BEAN)(mu-O(2)CAr(Tol))(3)](OTf) (5), where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine, does not undergo N-dealkylation, nor does it facilitate the oxidation of bis(4-methylbenzyl)amine. The contrast in reactivity of 4 and 5 is attributed to a difference in accessibility of the substrate to the diiron centers of the two compounds. The M?ssbauer spectroscopic properties of the diiron(II) complexes were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号