首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear viscoelastic materials yield a creep function which only depends on time if creep experiments are performed under constant stress 0. In practice, this condition is very difficult to realize, and as a consequence, the experiments are performed under constant force. For small strains the difference between the conditions of constant stress and constant force is negligible. Otherwise, the decrease in cross-section has to be taken into account and leads to increasing stress in the course of time for creep experiments under constant load. The Boltzmann superposition principle is solved under the condition of constant load and for strains . The creep complicance C(t; 0) defined by the ratio becomes, in principle, dependent on the initial stress 0. As a consequence, a set of creep compliance curves cannot be approximated with a simple parameter fit. Already the application of the solution on the Burger model yields a creep compliance curve with all three creep ranges. Furthermore, the mathematical structure of the time creep compliance relation of the Burger model allows nonlinear viscoelastic extension via the introduction of the yield strength max and a nonlinearity parameter n l . The creep behavior of PBT and PC can be described in the range of long times up to initial stresses 0, being 75% for PBT and 60% for PC of the yield stress max with only two or one free fit parameter, respectively.  相似文献   

2.
The purpose of this study is the construction of interpolation formulas for the dependence of Maxwell viscosity, a quantity which is the reciprocal of shear-strain relaxation time , on shear-strain intensity and temperature for several metals: iron, aluminum, copper, and lead. This function was interpolated in various temperature and deformation velocity ranges in accordance with available experimental data for iron (0 107 sec–1, 200 ° T 1500 °); aluminum (0 107 sec–1, 300 ° T 900 °); copper (0 105 sec–1, 300 ° T 1300 °); lead (0 106 sec–1, 90 ° T 400 °); temperatures in °K.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 114–118, July–August, 1974.  相似文献   

3.
The stress relaxation behavior of high density polyethylene (HDPE) can be affected by ageing processes; e.g., with increasing storage time at a low temperature following a quench from a high temperature (close to the melting point) the relaxation curves change shape. More specifically, the stress level approached after very long loading times in a stress relaxation experiment increases with the ageing time. Here this stress level is denoted the internal stress i. Struik has pointed out that physical ageing may also occur in semicrystalline polymers like HDPE. The physical ageing should then be associated with that part of the amorphous phase which is closest to the surfaces of the crystallites. This part of the amorphous phase of HDPE can be assumed to have a restricted mobility at room temperature and may have a partially glassy character. In this paper a model for explaining the increase in i for HDPE with increasing ageing time is proposed and discussed. It is based on the separation of the amorphous phase into two parts as suggested by Struik. The glassy part of the amorphous phase ages in a way similar to that of an entirely amorphous polymer quenched to a temperature below its glass transition, while the more rubbery phase is assumed not to undergo any physical ageing.  相似文献   

4.
An analysis of a two-dimensional flow of water at 4 °C past an infinite vertical, porous plate is presented under the following conditions — i) suction velocity normal to the plate is constant, ii) the free stream oscillates in time about a constant mean, iii) the plate temperature is constant, iv) the difference between the temperature of the plate and the free stream is moderately large causing free convection currents. — Approximate solutions to coupled non-linear equations are derived for the mean velocity, the mean temperature, the mean skin-friction, the mean rate of heat transfer, the transient velocity and the transient temperature, the amplitude and the phase of the skin-friction and the rate of heat transfer. The mean flow of water at 4 °C is compared with that of water at 20 °C in a quantitative manner for both G >0 (cooling of the plate) and G < 0 (heating of the plate). — It is observed that owing to a fall in the temperature of the water from 20 °C to 4 ° C, there is a fall in the mean skin-friction when the plate is being cooled by the free convection currents, and a rise in the mean skin-friction when the plate is being heated by the free convection currents. The amplitude of the skin-friction, for water at 4°C, remains the same for both G > <0 whereas greater cooling of the plate causes a rise in the amplitude of the rate of heat transfer ¦Q ¦ /E and greater heating of the plate causes a fall in ¦ Q ¦ /E.
Zusammenfassung Die zweidimensionale Stromung von Wasser bei 4 °C an einer unendlichen senkrechten Wand wird unter folgenden Bedingungen untersucht: 1) konstante Absauggeschwindigkeit normal zur Wand, 2) zeitliche Schwankungen der Freistromgeschwindigkeit um einen Mittelwert, 3) konstante Wandtemperatur, 4) mäßige Temperaturdifferenz zwischen Platte und Freistrom zur Erzeugung freier Konvektion. — Näherungslösungen der gekoppelten nichtlinearen Gleichungen sind abgeleitet für die mittlere Geschwindigkeit, die mittlere Temperatur, die mittlere Wandreibung, die mittlere Wärmeübertragung, die nichtstationäre Geschwindigkeit und Temperatur und die Amplitude und Phase der Wandreibung und der Warmeübertragung. Die Strömung von Wasser bei 4°C is quantitativ verglichen mit der bei 20°C für G > 0 (Kühlung der Platte) und G < 0 (Heizung der Platte). — Erniedrigung der Temperatur von 20°C auf 4°C ergibt geringere Wandreibung bei Kühlung und höhere Wandreibung bei Heizung der Platte. Für Wasser von 4°C bleibt die Amplitude der Wandreibung für G < 0 gleich; stärkere Kühlung ergibt einen Anstieg in der Amplitude der Warmeübertragung ¦Q¦/E, starkere Heizung einen Abfall in ¦q¦/E.

Nomenclature ¦B¦ amplitude of the skin-friction - Cp specific heat at constant pressure - E Eckert numer {U 0 2 /cp(T'w–T')} - gx acceleration due to gravity - G Grashoff number {vgx(T'w–T')/u0v 0 2 } - k thermal conductivity - Mr, Mi fluctuating parts of the velocity profile - P Prandtl number,c p /k - p pressure - q' rate of heat transfer - ¦Q¦ amplitude of the rate of heat transfer - t' time - T' temperature of fluid - T'w temperature of the plate - T' temperature of the fluid in the free-stream - Tr,Ti fluctuating parts of the temperature profile - u',v' velocity components in the X8,y' directions - U' free stream velocity - U0 amplitude of free stream fluctuations - u0 mean velocity - v0 suction velocity - x', y' coordinate system - ' frequency of free stream oscillations - non-dimensional frequency,'/vsk0/2 - ' skin-friction - 0 mean tempeature - 1 amplitude of the temperature fluctuations - phase angle of the skin-friction - 1 coefficient of volume expansion - ' density of fluid in the boundary layer - ' density of fluid in the free-stream - viscosity  相似文献   

5.
LARGEDEFLECTIONPROBLEMOFTHINORTHOTROPICCIRCULARPLATEONELASTICFOUNDATIONWITHVARIABLETHICKNESSUNDERUNIFORMPRESSURE(王嘉新)(刘杰)LARG...  相似文献   

6.
Knowles' representation theorem for harmonically time-dependent free surface waves on a homogeneous, isotropic elastic half-space is extended to include harmonically time-dependent free processes for thermoelastic surface waves in generalized thermoelasticity of Lord and Shulman and of Green and Lindsay.r , , r , , .This work was done when author was unemployed.  相似文献   

7.
The stress field in a cylindrical elastic body under antiplane deformation and certain constraints imposed on volume and surface forces is studied in a nonlinear formulation in actualstate variables. A boundaryvalue problem for independent stress components is formulated in Cartesian and complex variables, sufficient ellipticity conditions for this problem are indicated, and constraints on surface loading are imposed. Analytical solutions are given for linear and weak nonlinear elastic potentials. Similarity to a plane subsonic idealgas flow is established. An approximate method for the solution of the problem is developed.  相似文献   

8.
A numerical study of convective heat flow within a fibrous insulating slab is presented. The material is treated as an anisotropic porous medium and the variation of properties with temperature is taken into account. Good agreement is obtained with available experimental data for the same geometry.
Zusammenfassung Für den konvektiven Wärmestrom in einem faserförmigen Isolierstoff wird eine numerische Berechnung angegeben. Der Stoff wird als anisotropes poröses Medium mit temperaturabhängigen Stoffwerten angesehen. Die Übereinstimmung mit verfügbaren Versuchswerten ist gut.

Nomenclature Cp specific heat of the gas at the mean temperature - Da Darcy number=ky/H2 - Gr* modified Grashof number=gTHky/2= (Grashof number) × (Darcy number) - H thickness of the specimen - P gas pressure - Pr* modified Prandtl number= Cp/x - Ra* modified Rayleigh number=Gr* Pr* - Rp ratio of permeabilities=ky/kx - Rk ratio of conductivities= y/x - T absolute temperature of the gas - t1 absolute temperature of the hot face - T2 absolute temperature of the cold face - Tm mean temperature of the gas=(T1+T2)/2 - kx specific permeability of the porous medium along the x-direction - ky specific permeability of the porous medium along the y-direction - p T/Tm - q exponent - r exponent - u gas velocity along the x-direction - v gas velocity along the y-direction - X* distance along the x-direction - y* distance along the y-direction - T temperature difference=t1–T2 - thermal coefficient of expansion of the gas - m thermal coefficient of expansion of the gas at the mean temperature - * T–Tm - dimensionless temperature= */T - a apparent thermal conductivity of the porous medium along the x-direction - al local apparent thermal conductivity of the porous medium along the x-direction - x thermal conductivity of the porous medium along the x-direction in the absence of convection - y thermal conductivity of the porous medium along the y-direction in the absence of convection - dynamic viscosity of the gas - m dynamic viscosity of the gas at the mean temperature - kinematic viscosity of the gas - m kinematic viscosity of the gas at the mean temperature - density of the gas - m density of the gas at the mean temperature - * stream function at any point - dimensionless stream function= */( m/m)  相似文献   

9.
The injection moulding of thermoplastics involves, during mould filling, flows of hot polymer melts into mould networks, the walls of which are so cold that frozen layers form on them. An analytical study of such flows is presented here for the case when the Graetz and Nahme numbers are large and the Pearson number is small. Thus the flows are developing and temperature differences due to heat generation by viscous dissipation are sufficiently large to cause significant variations in viscosity (but the difference between the entry temperature of the polymer to a specific part of the mould network and the melting temperature of the polymer is not). Br Brinkman number - Gz Graetz number - h half-height of channel or disc - h * half-height of polymer melt region in channel or disc - L length of channel or pipe - m viscosity shear-rate exponent - Na Nahme number - p pressure - P pressure drop - Pe Péclet number - Pn Pearson number - Q volumetric flowrate - r radial coordinate in pipe or disc - R radius of pipe - Re Reynolds number - R i inner radius of disc - R o outer radius of disc - R * radius of polymer melt region in pipe - T temperature - T ad adiabatic temperature rise - T e entry polymer melt temperature - T m melting temperature of polymer - T max maximum temperature - T 0 reference temperature - T w wall temperature - flow-average temperature rise - u r radial velocity in pipe or disc - u x axial velocity in channel - u y transverse velocity in channel or disc - u z axial velocity in pipe - w width of channel - x axial coordinate in channel or modified radial coordinate in disc - y transverse coordinate in channel or disc - z axial coordinate in pipe - thermal conductivity of molten polymer - thermal conductivity of frozen polymer - scaled dimensionless axial coordinate in channel or pipe or radial coordinate in disc - 0 undetermined integration constant - heat capacity of molten polymer - viscosity temperature exponent - dimensionless transverse coordinate in channel or disc - * dimensionless half-height of polymer melt region in channel or disc - H * scaled dimensionless half-height of polymer melt region in channel or disc or radius of polymer melt region in pipe - dimensionless temperature - * dimensionless wall temperature - scaled dimensionless temperature - numerical constant - µ viscosity of molten polymer - µ 0 consistency of molten polymer - dimensionless pressure gradient - scaled dimensionless pressure gradient - density of molten polymer - dimensionless radial coordinate in pipe or disc - i dimensionless inner radius of disc - * dimensionless radius of polymer melt region in pipe - dimensionless streamfunction - scaled dimensionless streamfunction - dummy variable - streamfunction - similarity variable - similarity variable  相似文献   

10.
We describe a system in which vortices are shed from a cylindrical free surface approximately centered in a rotating flow. Shedding is controlled by the parameter =2 g/ 2 d, where g, , d denote gravity, rotation rate and the diameter of the free surface. We find vortex shedding for >0.162 and no vortex shedding for < 0.0847. The range depends on the aspect ratio L/d, where L is the column length, in a nonmonotonic fashion. These results are independent of viscosity and surface tension for small values of these parameters.Now at Martin Marietta, Orlando Aerospace, PO Box 5837, Mail Point 150, Orlando, FL 32855, USA  相似文献   

11.
An experimental study was done to quantify the effects of a variety of background particulates on the delayed laminar-turbulent transition of a thermally stabilized boundary layer in water. A Laser-Doppler Velocimeter system was used to measure the location of boundary layer transition on a 50 mm diameter, 9:1 fineness ratio ellipsoid. The ellipsoid had a 0.15 m RMS surface finish. Boundary layer transition locations were determined for length Reynolds numbers ranging from 3.0 × 106 to 7.5 × 106. The ellipsoid was tested in three different heating conditions in water seeded with particles of four distinct size ranges. For each level of boundary layer heating, measurements of transition were made for clean water and subsequently, water seeded with 12.5 m, 38.9 m, 85.5 m and 123.2 m particles, alternately. The three surface heating conditions tested were no heating, T = 10°C and T = 15°C where T is the difference between the inlet model heating water temperature, T i, and free stream water temperature, T . The effects of particle concentration were studied for 85.5 m and 123.2 m particulates.The results of the study can be summarized as follows. The 12.5 m and 38.9 m particles has no measurable effect on transition for any of the test conditions. However, transition was significantly affected by the 85.5 m and 123.2 m particles. Above a length Reynolds number of 4 × 106 the boundary layer transition location moved forward on the body due to the effect of the 85.5 m particles for all heating conditions. The largest percentage changes in transition location from clean water, were observed for 85.5 m particles seeded water.Transition measurements made with varied concentrations of background particulates indicated that the effect of the 85.5 m particles on the transition of the model reached a plateau between 2.65 particulates/ml concentration and 4.2 particles/ml. Measurements made with 123.3 m particles at concentrations up to 0.3 part/ml indicated no similar plateau.  相似文献   

12.
A perturbation analysis is presented for periodic heat transfer in radiating fins of uniform thickness. The base temperature is assumed to oscillate around a mean value. The perturbation expansion is carried out in terms of dimensionless amplitude of the base temperature oscillation. The zero-order problem which is nonlinear, and corresponds to the steady state fin behaviour, is solved by quasilinearization. A method of complex combination is used to reduce both the first and the second order problems to two, coupled linear boundary value problems which are subsequently solved by a noniterative numerical scheme. The second-order term is composed of an oscillatory component with twice the frequency of base temperature oscillation and a time-independent term which causes a net change in the steady state values of temperature and heat transfer rate. Within the range of parameters used, the net effect is to decrease the mean temperature and increase the mean heat transfer rate. This is in constrast to the linear case of convecting fins where the mean values are unaffected by base temperature oscillations. Detailed numerical results are presented illustrating the effects of fin parameter N and dimensionless frequency B on temperature distribution, heat transfer rate, and time-average fin efficiency. The time-average fin efficiency is found to reduce significantly at low N and high B.
Störungsanalyse für periodische Wärmeübertragung an Strahlungsrippen
Zusammenfassung Eine Störungsanalyse wird für periodische Wärmeübertragung in Strahlungsrippen gleicher Dicke vorgelegt. Die Fußtemperatur wird als um einen Mittelwert schwingend angenommen. Die Störungsentwicklung wird in Termen einer dimensionslosen Amplitude e dieser Schwingung angesetzt. Das Problem nullter Ordnung, das nichtlinear ist und dem stationären Verhalten der Rippe entspricht, wird durch Quasilinearisierung gelöst. Eine Methode der komplexen Kombination wird angewandt, um die Probleme erster und zweiter Ordnung auf zwei gekoppelte Grenzwertprobleme zu reduzieren, die nacheinander nach einem nichtiterativen Schema gelöst werden. Der Term zweiter Ordnung besteht aus einer Schwingungskomponente mit der doppelten Frequenz der Schwingung der Fußtemperatur und einem zeitunabhängigen Term, der eine Nettoänderung der stationären Werte der Temperatur und der Wärmeübertragung verursacht. Im verwendeten Bereich der Parameter tritt eine Abnahme der mittleren Temperatur und eine Zunahme der mittleren Wärmeübertragung auf. Das steht im Gegensatz zum linearen Fall der Konvektionsrippe, bei dem die Mittelwerte durch Schwingungen der Fußtemperatur nicht beeinflußt werden. Detaillierte numerische Ergebnisse zeigen die Einflüsse des Rippenparameters N und der dimensionslosen Frequenz B auf Temperatur Verteilung, Wärmeübertragung und zeitliches Mittel des Rippengütegrades. Dieses zeitliche Mittel nimmt merklich ab bei kleinem N und hohem B.

Nomenclature b fin thickness - B dimensionless frequency, L2/ - E emissivity - f0, f1 functions of X - g0, g1, g2 functions of X - h0, h1, h2 functions of X - k thermal conductivity - L fin Length - N fin parameter, 2EL2Tbm/bk - q heat transfer rate - Q dimensionless heat transfer rate, qL/kbTbm - t time - T temperature - Tb fin base temperature - TS effective sink temperature - Tbm mean fin base temperature - x axial distance - X dimensionless axial distance, x/L - dimensionless amplitude of base temperature (s. Eq.2) - thermal diffusivity - instantaneous fin efficiency - time-average fin efficiency - ss steady state fin efficiency - dimensionless temperature, T/Tbm - 0 zero-order approximation - 1 first-order approximation - 2 second-order approximation - 2s steady component of 2 - , 1, 2 constants - complex function of X - 1 real part of - 2 imaginary part of - complex function of X - 1 real part of Y - 2 imaginary part of - dimensionless time, t/L2 - frequency of base temperature oscillation  相似文献   

13.
The effect of the temperature accommodation coefficient T on the relations at the Knudsen layer edge is investigated for strong evaporation using the moment method. An explicit expression for the dimensionless density as a function of the temperature and the Mach number M is obtained for 0 < T < 1. For T = 0 the entire solution is obtained in explicit form. It is shown that for = 0 and a condensation coefficient << 1 the temperature outside the Knudsen layer changes sharply as M varies from 0 to a certain value much less than unity after which the temperature ceases to depend on . For the model of specular reflection of the molecules from the surface the density and the temperature outside the Knudsen layer are found in explicit form as functions of the Mach number.  相似文献   

14.
A method is presented for calculating the distribution of the thermal fluxes, friction stresses, and pressure near the corner point of a body contour in whose vicinity the outer supersonic flow passes through an expansion wave. The method is based on a study of the asymptotic solutions of the Navier-Stokes equations as the Reynolds number R approaches infinity for the flow region in which the longitudinal gradients of the flow functions are large, invalidating conventional boundary layer theory. This problem was examined in part in [1], in which the distribution of the friction and pressure in a region with length on the order of a few thicknesses of the approaching boundary layer was obtained in the first approximation. The leading term of the expansion for the thermal flux to the surface of the body vanishes for a value of the Prandtl number equal to unity and for other values of the Prandtl number does not match directly with its value in the undisturbed boundary layer.The thermal-flux distribution is obtained for values of the Prandtl number approaching unity. For this purpose it was necessary to consider a more general double passage to the limit as 1 and 0 for a finite value of the parameter B=[(–1)/] [–ln 1/4/]1/4 characterizing the ratio of the effects of thermal conduction, viscous dissipation, and convection. The solution obtained previously [1] corresponds to the particular case B and therefore for actual values of R=104–106, ~ 0.7 overestimates considerably the effect of the dissipative term on heat transfer, although even in first approximation it describes the pressure distribution well and the friction distribution satisfactorily. For smooth matching of the solutions with the corresponding flow functions in the undisturbed boundary layer it was necessary to introduce a flow region with free interaction for the expansion flow. Equations and boundary conditions which describe the flow as a whole are presented. Examples are given of numerical calculations and comparison with experiment.  相似文献   

15.
S. Kase 《Rheologica Acta》1982,21(2):210-211
The general integral of the very simple equation 21/n/() was found to describe the cross sectional area of filaments of isothermal power law fluids while in transient stretching where is time and is the initial location of fluid molecules at time = 0 given as the distance from a reference point fixed in space. Any such stretching transient given as a solution of the above equation is physically realizable subject to the restrictions > 0 and/ < 0.  相似文献   

16.
The behavior of the neutral stability curves is investigated for various values of the particle relaxation time and mass concentration 0 100 and 0 f 0.1. It is shown that as increases from zero the flow is at first destabilized and then at >6 becomes stable, while at >40 the stabilizing effect of the dispersed phase grows weaker. It is found that there is a certain interval 10< <40 on which the flow is most stable.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 46–53, January–February, 1986.  相似文献   

17.
The problem of laminar, natural convection flow over a slender frustum of a cone is treated in this paper. The governing differential equations are solved by a combination of quasi-linearization and finite-difference methods. Numerical solutions are obtained for Pr=0.7 and for a range of values of the transverse curvature parameter. It is shown that the effect of transverse curvature is of great significance in such flows.
Laminare natürliche Konvektion an einem dünnen, senkrechten Kegelstumpf
Zusammenfassung In diesem Bericht ist das Problem der laminaren natürlichen Konvektionsströmung an einem dünnen Kegelstumpf behandelt. Die maßgebliche Differentialgleichung ist durch eine Verbindung von Quasilinearisation und Differenzenverfahren gelöst. Eine numerische Lösung für Pr=0.7 wird für verschiedene Werte eines Krümmungsparameters angegeben. Es ist gezeigt, daß in solchen Strömungen dieser Krümmungsparameter eine große Bedeutung besitzt.

Nomenclature f dependent variable, defined in Eq. (7) - g dependent variable, defined in Eq. (7) - ge gravitational acceleration - h heat transfer coefficient, or -grid - k heat conductivity, or -grid - L characteristic length - Nu Nusselt number - Pr Prandtl number - r radial distance from the axis of the cone - R transverse curvature effect ratio, defined in Eq. (23) - Re Reynold number - T temperature - u, v velocity components in the x- and y-directions, respectively - x, y rectangular coordinates Greek letters dimensionless temperature, definedinEq. (4) - bulk modulus - cone angle - dynamic viscosity - stream function - , independent variable, defined in (7) - transverse curvature parameter  相似文献   

18.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

19.
Missirlis  Y.F.  Mavrilas  D.  Athanassiou  G. 《Meccanica》2002,37(4-5):465-476
A fundamental anatomical composition of the heart valves is presented along with its relationship to the tissue mechanical behavior. During the loading and unloading phases of the tissue different stress strain pathways are followed with the curves composing the characteristic hysteresis loop, exhibiting the viscoelastic mechanical behavior of valvular tissue. The storage modulus and the phase shift (tan ) as well as the collagen modulus of human heart valves were measured in orthotropic directions using uniaxial dynamic tensile tests at 10 Hz. Viscoelastic properties of human erythrocytes are presented as calculated from micropipette aspiration experiments. Employing the hemorheometre, from filtration experiments an index of rigidity (IR) of erythrocytes is estimated. A relationship between the global parameter IR and the shear elastic modulus of erythrocyte membrane, , is established. The same two techniques adapted for leukocytes and their subpopulations have been used and a relationship between the rigidity index of leukocytes (ILR) and their apparent bulk viscosity (app), has been found.  相似文献   

20.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号