首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We show that for anyk, there exists an on-line algorithm that will color anyk-colorable graph onn vertices withO(n 1−1/k! ) colors. This improves the previous best upper bound ofO(nlog(2k−3) n/log(2k−4) n) due to Lovász, Saks, and Trotter. In the special casesk=3 andk=4 we obtain on-line algorithms that useO(n 2/3log1/3 n) andO(n 5/6log1/6 n) colors, respectively.  相似文献   

2.
Algorithms for graphs of bounded treewidth via orthogonal range searching   总被引:1,自引:1,他引:0  
We show that, for any fixed constant k3, the sum of the distances between all pairs of vertices of an abstract graph with n vertices and treewidth at most k can be computed in O(nlogk−1n) time.We also show that, for any fixed constant k2, the dilation of a geometric graph (i.e., a graph drawn in the plane with straight-line segments) with n vertices and treewidth at most k can be computed in O(nlogk+1n) expected time. The dilation (or stretch-factor) of a geometric graph is defined as the largest ratio, taken over all pairs of vertices, between the distance measured along the graph and the Euclidean distance.The algorithms for both problems are based on the same principle: data structures for orthogonal range searching in bounded dimension provide a compact representation of distances in abstract graphs of bounded treewidth.  相似文献   

3.
Cycles in weighted graphs   总被引:2,自引:0,他引:2  
A weighted graph is one in which each edgee is assigned a nonnegative numberw(e), called the weight ofe. The weightw(G) of a weighted graphG is the sum of the weights of its edges. In this paper, we prove, as conjectured in [2], that every 2-edge-connected weighted graph onn vertices contains a cycle of weight at least 2w(G)/(n–1). Furthermore, we completely characterize the 2-edge-connected weighted graphs onn vertices that contain no cycle of weight more than 2w(G)/(n–1). This generalizes, to weighted graphs, a classical result of Erds and Gallai [4].  相似文献   

4.
In this paper we show that (n) variables are needed for first-order logic with counting to identify graphs onn vertices. Thek-variable language with counting is equivalent to the (k–1)-dimensional Weisfeiler-Lehman method. We thus settle a long-standing open problem. Previously it was an open question whether or not 4 variables suffice. Our lower bound remains true over a set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our lower bound is optimal up to multiplication by a constant becausen variables obviously suffice to identify graphs onn vertices.Research supported by NSF grant CCR-8709818.Research supported by NSF grant CCR-8805978 and Pennsylvania State University Research Initiation grant 428-45.Research supported by NSF grants DCR-8603346 and CCR-8806308.  相似文献   

5.
LetG(n) be the set of all nonoriented graphs with n enumerated points without loops or multiple lines, and let vk(G) be the number of mutually nonisomorphic k-point subgraphs of G G(n). It is proved that at least |G(n)| (1–1/n) graphs G G(n) possess the following properties: a) for any k [6log2n], where c=–c log2c–(1–c)×log2(1–c) and c>1/2, we havev k(G) > C n k (1–1/n2); b) for any k [cn + 5 log2n] we havev k(G) = C n k . Hence almost all graphs G G(n) containv(G) 2n pairwise nonisomorphic subgraphs.Translated from Matematicheskie Zametki, Vol. 9, No. 3, pp. 263–273, March, 1971.  相似文献   

6.
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.  相似文献   

7.
In this article we investigate properties of the class of all l-colorable graphs on n vertices, where l = l(n) may depend on n. Let Gln denote a uniformly chosen element of this class, i.e., a random l-colorable graph. For a random graph Gln we study in particular the property of being uniquely l-colorable. We show that not only does there exist a threshold function l = l(n) for this property, but this threshold corresponds to the chromatic number of a random graph. We also prove similar results for the class of all l-colorable graphs on n vertices with m = m(n) edges.  相似文献   

8.
Let us defineG(n) to be the maximum numberm such that every graph onn vertices contains at leastm homogeneous (i.e. complete or independent) subgraphs. Our main result is exp (0.7214 log2 n) ≧G(n) ≧ exp (0.2275 log2 n), the main tool is a Ramsey—Turán type theorem. We formulate a conjecture what supports Thomason’s conjecture R(k, k)1/k = 2.  相似文献   

9.
We call a graph (m, k)-colorable if its vertices can be colored with m colors in such a way that each vertex is adjacent to at most k vertices of the same color as itself. For the class of planar graphs, and the class of outerplanar graphs, we determine all pairs (m, k) such that every graph in the class is (m, k)-colorable. We include an elementary proof (not assuming the truth of the four-color theorem) that every planar graph is (4, 1)-colorable. Finally, we prove that, for each compact surface S, there is an integer k = k(S) such that every graph in S can be (4, k)-colored; we conjecture that 4 can be replaced by 3 in this statement.  相似文献   

10.
Summary This paper considers random walks on the integers modn supported onk points and asks how long does it take for these walks to get close to uniformly distributed. Ifk is a constant, Greenhalgh showed that at least some constant timesn 2/(k–1) steps are necessary to make the distance of the random walk from the uniform distribution small; here we show that ifn is prime, some constant timesn 2/(k–1) steps suffice to make this distance small for almost all choices ofk points. The proof uses the Upper Bound Lemma of Diaconis and Shahshahani and some averaging techniques. This paper also explores some cases wherek varies withn. In particular, ifk=(logn) a , we find different kinds of results for different values ofa, and these results disprove a conjecture of Aldous and Diaconis.Research Supported in Part by a Rackham Faculty Fellowship at the University of Michigan  相似文献   

11.
We study the problem of coloring graphs in an online manner. The only known deterministic online graph coloring algorithm with a sublinear performance function was found by [9.], 319–325). Their algorithm colors graphs of chromatic number χ with no more than (2χn)/log* n colors, where n is the number of vertices. They point out that the performance can be improved slightly for graphs with bounded chromatic number. For three-chromatic graphs the number of colors used, for example, is O(n log log log n/log log n). We show that randomization helps in coloring graphs online. We present a simple randomized online algorithm to color graphs with expected number of colors O(2χχ2n(χ−2)/(χ−1)(log n)1/(χ−1)). For three-colorable graphs the expected number of colors our algorithm uses is . All our algorithms run in polynomial time. It is interesting to note that our algorithm compares well with the best known polynomial time offline algorithms. For instance, the best polynomial time algorithm known for three-colorable graphs, due to [4.] pp. 554–562). We also prove a lower bound of Ω((1/(χ − 1))((log n/(12(χ + 1))) − 1)χ−1) for the randomized model. No lower bound for the randomized model was previously known. For bounded χ, our result improves even the best known lower bound for the deterministic case: Ω((log n/log log n)χ−1), due to Noga Alon (personal communication, September 1989).  相似文献   

12.
We give improved solutions for the problem of generating thek smallest spanning trees in a graph and in the plane. Our algorithm for general graphs takes timeO(m log(m, n)=k 2); for planar graphs this bound can be improved toO(n+k 2). We also show that thek best spanning trees for a set of points in the plane can be computed in timeO(min(k 2 n+n logn,k 2+kn log(n/k))). Thek best orthogonal spanning trees in the plane can be found in timeO(n logn+kn log log(n/k)+k 2).  相似文献   

13.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

14.
Lets(d, n) be the number of triangulations withn labeled vertices ofS d–1, the (d–1)-dimensional sphere. We extend a construction of Billera and Lee to obtain a large family of triangulated spheres. Our construction shows that logs(d, n)C 1(d)n [(d–1)/2], while the known upper bound is logs(d, n)C 2(d)n [d/2] logn.Letc(d, n) be the number of combinatorial types of simpliciald-polytopes withn labeled vertices. (Clearly,c(d, n)s(d, n).) Goodman and Pollack have recently proved the upper bound: logc(d, n)d(d+1)n logn. Combining this upper bound forc(d, n) with our lower bounds fors(d, n), we obtain, for everyd5, that lim n(c(d, n)/s(d, n))=0. The cased=4 is left open. (Steinitz's fundamental theorem asserts thats(3,n)=c(3,n), for everyn.) We also prove that, for everyb4, lim d(c(d, d+b)/s(d, d+b))=0. (Mani proved thats(d, d+3)=c(d, d+3), for everyd.)Lets(n) be the number of triangulated spheres withn labeled vertices. We prove that logs(n)=20.69424n(1+o(1)). The same asymptotic formula describes the number of triangulated manifolds withn labeled vertices.Research done, in part, while the author visited the mathematics research center at AT&T Bell Laboratories.  相似文献   

15.
This paper presents fast parallel algorithms for the following graph theoretic problems: breadth-depth search of directed acyclic graphs; minimum-depth search of graphs; finding the minimum-weighted paths between all node-pairs of a weighted graph and the critical activities of an activity-on-edge network. The first algorithm hasO(logdlogn) time complexity withO(n 3) processors and the remaining algorithms achieveO(logd loglogn) time bound withO(n 2[n/loglogn]) processors, whered is the diameter of the graph or the directed acyclic graph (which also represents an activity-on-edge network) withn nodes. These algorithms work on an unbounded shared memory model of the single instruction stream, multiple data stream computer that allows both read and write conflicts.  相似文献   

16.
The Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of an n-element set, with two vertices adjacent if the sets are disjoint. The chromatic number of the Kneser graph K(n, k) is n–2k+2. Zoltán Füredi raised the question of determining the chromatic number of the square of the Kneser graph, where the square of a graph is the graph obtained by adding edges joining vertices at distance at most 2. We prove that (K2(2k+1, k))4k when k is odd and (K2(2k+1, k))4k+2 when k is even. Also, we use intersecting families of sets to prove lower bounds on (K2(2k+1, k)), and we find the exact maximum size of an intersecting family of 4-sets in a 9-element set such that no two members of the family share three elements.This work was partially supported by NSF grant DMS-0099608Final version received: April 23, 2003  相似文献   

17.
Given two graphsH andG, letH(G) denote the number of subgraphs ofG isomorphic toH. We prove that ifH is a bipartite graph with a one-factor, then for every triangle-free graphG withn verticesH(G) H(T 2(n)), whereT 2(n) denotes the complete bipartite graph ofn vertices whose colour classes are as equal as possible. We also prove that ifK is a completet-partite graph ofm vertices,r > t, n max(m, r – 1), then there exists a complete (r – 1)-partite graphG* withn vertices such thatK(G) K(G*) holds for everyK r -free graphG withn vertices. In particular, in the class of allK r -free graphs withn vertices the complete balanced (r – 1)-partite graphT r–1(n) has the largest number of subgraphs isomorphic toK t (t < r),C 4,K 2,3. These generalize some theorems of Turán, Erdös and Sauer.Dedicated to Paul Turán on his 80th Birthday  相似文献   

18.
Conditions are found under which the expected number of automorphisms of a large random labelled graph with a given degree sequence is close to 1. These conditions involve the probability that such a graph has a given subgraph. One implication is that the probability that a random unlabelledk-regular simple graph onn vertices has only the trivial group of automorphisms is asymptotic to 1 asn → ∞ with 3≦k=O(n 1/2−c). In combination with previously known results, this produces an asymptotic formula for the number of unlabelledk-regular simple graphs onn vertices, as well as various asymptotic results on the probable connectivity and girth of such graphs. Corresponding results for graphs with more arbitrary degree sequences are obtained. The main results apply equally well to graphs in which multiple edges and loops are permitted, and also to bicoloured graphs. Research of the second author supported by U. S. National Science Foundation Grant MCS-8101555, and by the Australian Department of Science and Technology under the Queen Elizabeth II Fellowships Scheme. Current address: Mathematics Department, University of Auckland, Auckland, New Zealand.  相似文献   

19.
A coloring of the edges of a graph is called alocal k-coloring if every vertex is incident to edges of at mostk distinct colors. For a given graphG, thelocal Ramsey number, r loc k (G), is the smallest integern such that any localk-coloring ofK n , (the complete graph onn vertices), contains a monochromatic copy ofG. The following conjecture of Gyárfás et al. is proved here: for each positive integerk there exists a constantc = c(k) such thatr loc k (G) cr k (G), for every connected grraphG (wherer k (G) is theusual Ramsey number fork colors). Possible generalizations for hypergraphs are considered.On leave from the Institute of Mathematics, Technical University of Warsaw, Poland.While on leave at University of Louisville, Fall 1985.  相似文献   

20.
We obtain a convenient expression for the parameters of a strongly regular graph with k=2 in terms of the nonprincipal eigenvalues x and –y. It turns out in particular that such graphs are pseudogeometric for pG x(2x,y–1). We prove that a strongly regular graph with parameters (35,16,6,8) is a quotient of the Johnson graph (8,4). We also find the parameters of strongly regular graphs in which the neighborhoods of vertices are pseudogeometric graphs for pG x(2x,t),x3. In consequence, we establish that a connected graph in which the neighborhoods of vertices are pseudogeometric graphs for pG 3(6,2) is isomorphic to the Taylor graph on 72 vertices or to the alternating form graph Alt(4,2) with parameters (64,35,18,20).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号