首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the renormalisation of lattice QCD operators with one and two covariant derivatives related to the first and second moments of generalised parton distributions and meson distribution amplitudes. Employing the clover fermion action we calculate their non-forward quark matrix elements in one-loop lattice perturbation theory. For some representations of the hypercubic group commonly used in simulations we determine the sets of all possible mixing operators and compute the matrices of the renormalisation factors in one-loop approximation. We describe how tadpole improvement is applied to the results. PACS 11.15.Ha; 12.38.Bx; 12.38.Gc An erratum to this article can be found at  相似文献   

2.
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviors. An exciting proposal for quantum computation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. The so-called non-Abelian anyons are most promising for quantum computation, but their physical realization may prove to be complex. Abelian anyons, however, are easier to understand theoretically and realize experimentally. Here we show that complex topological memories inspired by non-Abelian anyons can be engineered in Abelian models. We explicitly demonstrate the control procedures for the encoding and manipulation of quantum information in specific lattice models that can be implemented in the laboratory. This bridges the gap between requirements for anyonic quantum computation and the potential of state-of-the-art technology.  相似文献   

3.
We extend the SU(2) lattice gauge theory of Kogut and Susskind to a general non-Abelian gauge group. At the Lagrangian level, we find the theory to be related to the motion of a point in group space. We then quantise such a system using the natural geometric structure of group parameter space, and we apply our results to find the Hamiltonian for the general lattice gauge theory. We also discuss the large N behaviour of the theory.  相似文献   

4.
The renormalisation properties of non-Abelian chiral Sdwinger model is studied. The oneloop renormalixation counterterm is calculated. The results show that α (an arbitrary parameter appearing in the theory and determining its unitarity) is renormalized unless it is equal to zero or two, and there is neither coupling constant renormalization of e nor wave function renormalixation of gauge field, fermion field, and Wem-Zumino field.  相似文献   

5.
6.
《Nuclear Physics B》2002,620(1-2):259-289
Recently, we presented the first non-Abelian flat directions that produce from a heterotic string model solely the three-generation MSSM states as the massless spectrum in the observable sector of the low energy effective field theory. In this paper we continue to develop the systematic techniques for the analysis of non-renormalizable superpotential terms and non-Abelian flat direction in realistic string models. Some of our non-Abelian directions were F-flat to all finite orders in the superpotential. We study for the same string model the varying phenomenologies resulting from a large set of such all-order flat directions. We focus on the quark, charged lepton, and Higgs doublet mass matrices resulting for our phenomenologically superior non-Abelian flat direction. We review and apply a string-related method for generating large mass hierarchies between MSSM generations, first discussed in string-derived flipped SU(5) models, when all generational mass terms are of renormalizable or very low non-renormalizable order.  相似文献   

7.
We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung (ZB) with ultracold, neutral atoms. A four-level tripod variant of the setup for stimulated Raman adiabatic passage (STIRAP) has previously been proposed for generating non-Abelian gauge fields. Dirac-like Hamiltonians, which exhibit ZB, are simple examples of such non-Abelian gauge fields; we show how a variety of them can arise, and how ZB can be observed, in a tripod system. We predict that the ZB should occur at experimentally accessible frequencies and amplitudes.  相似文献   

8.
In conventional gauge theory, a charged point particle is described by a representation of the gauge group. If we propagate the particle along some path, the parallel transport of the gauge connection acts on this representation. The Lagrangian density of the gauge field depends on the curvature of the connection which can be calculated from the holonomy around (infinitesimal) loops. For Abelian symmetry groups, say G=U(1), there exists a generalization, known as p-form electrodynamics, in which (p−1)-dimensional charged objects can be propagated along p-surfaces and in which the Lagrangian depends on a generalized curvature associated with (infinitesimal) closed p-surfaces. In this article, we use Lie 2-groups and ideas from higher category theory in order to formulate a discrete gauge theory which generalizes these models at the level p=2 to possibly non-Abelian symmetry groups. An important feature of our model is that it involves both parallel transports along paths and generalized transports along surfaces with a non-trivial interplay of these two types of variables. Our main result is the geometric picture, namely the assignment of non-Abelian quantities to geometrical objects in a coordinate free way. We construct the precise assignment of variables to the curves and surfaces, the generalized local symmetries and gauge invariant actions and we clarify which structures can be non-Abelian and which others are always Abelian. A discrete version of connections on non-Abelian gerbes is a special case of our construction. Even though the motivation sketched so far suggests applications mainly in string theory, the model presented here is also related to spin foam models of quantum gravity and may in addition provide some insight into the role of centre monopoles and vortices in lattice QCD.  相似文献   

9.
《Physics letters. A》2020,384(7):126152
Derived from quantum waves immersed in an Abelian gauge potential, the quasiperiodic Aubry-André-Harper (AAH) model is a simple yet powerful Hamiltonian to study the Anderson localization of ultracold atoms. Here, we investigate the localization properties of ultracold atoms in quasiperiodic optical lattices subject to a non-Abelian gauge potential, which are depicted by non-Abelian AAH models. We identify that the non-Abelian AAH models can bear the self-duality. We analyze the localization of such non-Abelian self-dual optical lattices, revealing a rich phase diagram driven by the non-Abelian gauge potential involved: a transition from a pure delocalization phase, then to coexistence phases, and finally to a pure localization phase. This is in stark contrast to the Abelian counterpart that does not support the coexistence phases. Our results establish the connection between localization and gauge symmetry, and thus comprise a new insight on the fundamental aspects of localization in quasiperiodic systems, from the perspective of non-Abelian gauge potential.  相似文献   

10.
K. Sokalski 《Physica A》1985,130(3):412-436
We consider two- and three-dimensional lattices with on each lattice a D-dimensional classical spin-vector. We restrict ourselves to nearest neighbour interactions which only depend on the angle between the spin-vectors. For these systems the bond-moving approximation of Migdal and Kadanoff is used to derive renormalisation group equations which do not violate the symmetry of the lattice. Without further approximations these equations are then solved numerically. In addition to the specific heat we also calculate critical temperatures, critical exponents and phase diagrams for ferromagnets, liquid crystals and other related systems. For the simple cubic lattice we find a rich phase diagram, which among others indicates the existence of an anti-nematic phase in liquid crystals.  相似文献   

11.
We show that the eigenvalues of the T-matrix of the renormalisation group equations on a lattice linearized around a fixed point, are always real although the matrix is non-symmetric.  相似文献   

12.
We develop an analytical approach for studying lattice gauge theories within the plaquette representation where the plaquette matrices play the role of the fundamental degrees of freedom. We start from the original Batrouni formulation and show how it can be modified in such a way that each non-Abelian Bianchi identity contains only two connectors instead of four. In addition, we include dynamical fermions in the plaquette formulation. Using this representation we construct the low-temperature perturbative expansion for U(1)U(1) and SU(N)SU(N) models and discuss its uniformity in the volume. The final aim of this study is to give a mathematical background for working with non-Abelian models in the plaquette formulation.  相似文献   

13.
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross‐Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so‐called overlap‐hypercube fermions in the two‐flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p‐regime and in the ϵ‐regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian – the chiral condensate and the pion decay constant – from QCD simulations with extremely light quarks.  相似文献   

14.
We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.  相似文献   

15.
We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev?s quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen?s string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.  相似文献   

16.
We review recent developments in understanding the physics of the magnetic monopoles in unbroken non-Abelian gauge theories. Since numerical data on the monopoles are accumulated in lattice simulations, the continuum theory is understood as the limiting case of the lattice formulation. We emphasize physical effects related to the monopoles. In particular, we discuss the monopole-antimonopole potential at short and larger distances as well as a dual formulation of the gluodynamics, relevant to the physics of the confinement.  相似文献   

17.
In this paper we give a much more efficient proof that the real Euclidean ? 4-model on the four-dimensional Moyal plane is renormalisable to all orders. We prove rigorous bounds on the propagator which complete the previous renormalisation proof based on renormalisation group equations for non-local matrix models. On the other hand, our bounds permit a powerful multi-scale analysis of the resulting ribbon graphs. Here, the dual graphs play a particular rôle because the angular momentum conservation is conveniently represented in the dual picture. Choosing a spanning tree in the dual graph according to the scale attribution, we prove that the summation over the loop angular momenta can be performed at no cost so that the power-counting is reduced to the balance of the number of propagators versus the number of completely inner vertices in subgraphs of the dual graph.  相似文献   

18.
 Spatial noncommutativity is similar and can even be related to the non- Abelian nature of multiple D-branes. But they have so far seemed independent of each other. Reflecting this decoupling, the algebra of matrix valued fields on noncommutative space is thought to be the simple tensor product of constant matrix algebra and the Moyal-Weyl deformation. We propose scenarios in which the two become intertwined and inseparable. Therefore the usual separation of ordinary or noncommutative space from the internal discrete space responsible for non-Abelian symmetry is really the exceptional case of an unified structure. We call it non-Abelian geometry. This general structure emerges when multiple D-branes are configured suitably in a flat but varying B field background, or in the presence of non-Abelian gauge field background. It can also occur in connection with Taub-NUT geometry. We compute the deformed product of matrix valued functions using the lattice string quantum mechanical model developed earlier. The result is a new type of associative algebra defining non-Abelian geometry. A possible supergravity dual is also discussed. Received: 13 December 2000 / Accepted: 24 October 2002 Published online: 24 January 2003 Communicated by R. H. Dijkgraaf  相似文献   

19.
It is well known that the order in which the sites of a non-Abelian coupled map lattice model (as the Olami-Feder-Christensen model) are updated determines the final configuration. In order to eliminate this ambiguity one must use a parallel update. In this paper we present a simple sequential update that is equivalent to the parallel one; we show that it obeys the natural branching structure of the avalanche. We also show that the main effect of the other sequential methods, which do not obey the branching structure of the avalanche, is to increase the revisitations of critical sites, which enhances the number of large avalanches in the lattice.  相似文献   

20.
Qi Zhang  C.H. Oh 《Annals of Physics》2010,325(6):1219-1543
Tripod-scheme cold atoms interacting with laser beams have attracted considerable interest for their role in synthesizing effective non-Abelian vector potentials. Such effective vector potentials can be exploited to realize an all-optical imprinting of geometric phases onto matter waves. By working on carefully designed extensions of our previous work, we show that coherent lattice structure of cold-atom sub-wavepackets can be formed and that the non-Abelian Aharonov-Bohm effect can be easily manifested via the translational motion of cold atoms. We also show that by changing the frame of reference, effects due to a non-Abelian vector potential may be connected with a simple dynamical phase effect, and that under certain conditions it can be understood as an Abelian geometric phase in a different frame of reference. Results should help design better schemes for the control of cold-atom matter waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号