首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the Kondo effect in a Weyl metal state, which occurs from a spin-orbit coupled Dirac metal phase under magnetic fields. We start from an effective field theory in terms of low-energy fermions on a pair of chiral Fermi surfaces, which takes into account both the Berry curvature and chiral anomaly. Resorting to the U(1) slave-boson mean-field theory, we find that the effective Kondo temperature increases monotonically as a function of the external magnetic field due to enhancement of the density of states. The enhancement is originated from the chiral magnetic effect which is novel feature of Weyl metals. This leads to the prediction of the magnetic-field dependence in the logarithmic temperature dependence of the longitudinal magnetoconductivity.  相似文献   

2.
Yi-Ming Liu 《中国物理 B》2022,31(5):57201-057201
New characteristics of the Kondo effect, arising from spin chirality induced by the Berry phase in the equilibrium state, are investigated. The analysis is based on the hierarchical equations of motion (HEOM) approach in a triangular triple quantum-dot (TTQD) structure. In the absence of magnetic field, TTQD has four-fold degenerate chiral ground states with degenerate spin chirality. When a perpendicular magnetic field is applied, the chiral interaction is induced by the magnetic flux threading through TTQD and the four-fold degenerate states split into two chiral state pairs. The chiral excited states manifest as chiral splitting of the Kondo peak in the spectral function. The theoretical analysis is confirmed by the numerical computations. Furthermore, under a Zeeman magnetic field B, the chiral Kondo peak splits into four peaks, owing to the splitting of spin freedom. The influence of spin chirality on the Kondo effect signifies an important role of the phase factor. This work provides insight into the quantum transport of strongly correlated electronic systems.  相似文献   

3.
Lee T  Broderick NG  Brambilla G 《Optics letters》2011,36(15):2839-2841
We have studied the effects of the Berry phase on the linear transmission properties of optical microcoil resonators and analyzed the resonant behavior for different input polarizations and coil geometries. Contrary to previous expectations, we find that on resonance the size of the Berry phase shift can be magnified significantly, leading to a measurable polarization rotation for some geometries. Our model also considers other polarization effects including elasto-optic bend birefringence and the polarization dependent coupling coefficients, which were also previously neglected, and we still find that observable Berry phase effects persist. For example, in a three turn microcoil with a diameter of 0.2 mm, close to 100% of an initially x polarized light will be coupled into the orthogonal y polarization, due to the optical activity arising from the cumulative effects of Berry phase on resonance. More generally, the cross-polarization coupling also significantly influences the resonance extinction ratio and quality factor.  相似文献   

4.
郭继勇  陈宇光  陈鸿 《中国物理》2005,14(4):821-825
利用平均场,我们研究了一个具有链间耦合作用的有机铁磁模型,并给出了该模型的全相图。计算表明,链间耦合强烈影响其基态的磁序。当链间耦合达到某临界值时,高自旋基态消失,整个系统由铁磁相转变为近藤单态(Kondo-singlet)相。  相似文献   

5.
We investigate the competition between magnetic order and local Kondo effect in a Kondo lattice model (i.e. the Coqblin-Schrieffer Hamiltonian extended to a lattice) in a mean-field approximation, taking account of the spin-orbit degeneracy of each localized f level. This leads to the definition of a dependent Kondo temperature. We study the Kondo phase and compare its energy with the energies of magnetic phases, when the number of the conduction band electron per site is near one. We present a phase diagram which shows the occurrence of three phases: Kondo, antiferromagnetic and paramagnetic phases. Our model in the mean-field approximation also shows a somewhat flat Kondo temperature, for large values of , as a function of the exchange coupling J between conduction and localized f electrons. Finally we show some scaling effects between and J and we define a corresponding Kondo temperature. Received 21 September 1998 and Received in final form 8 February 1999  相似文献   

6.
A key to understand the physics of heavy Fermion systems is the competition between the RKKY interaction and the Kondo screening effect of magnetic moments. The Kondo lattice model is a theoretical model for which one can study the interplay. Recently the ground state phase diagram of the one‐dimensional Kondo lattice model has been completed. After reviewing the properties of the three phases in the phase diagram we discuss the Kondo insulator in one‐dimension with particular emphasis on the difference between the spin excitation gap and the charge excitation gap. We argue that the Kondo insulators may be distinguished from the ordinary band insulators by the difference between the two gaps. Another topic which is discussed in this article is the complicated magnetic phase diagram of the low‐carrier‐density system of cerium monopnictides. We propose that the new mechanism which exists for Kondo semimetals may be responsible for the complicated magnetic structures in these compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
In this paper we investigate the Berry phase in Tavis-Cummings model in the rotating wave approximation. The dipole-dipole interaction between the atoms is considered. The eigenfunctions of the system are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the phase shift. It is shown that the Berry phase can be easily controlled by the atom-cavity coupling strength, the cavity frequency detuning, which can be important in applications in geometric quantum computing.  相似文献   

8.
We study the interplay between the spin-liquid and Kondo physics, as related to the nonmagnetic part of the phase diagram of heavy fermion materials. Within the unrestricted mean-field treatment of the infinite-U 2D Anderson-Heisenberg model, we find that there are two topologically distinct nondegenerate uniform heavy Fermi liquid states that may form as a consequence of the Kondo coupling between spinons and conduction electrons. For certain carrier concentrations, the uniform Fermi liquid becomes unstable with respect to the formation of a new kind of anharmonic "Kondo stripe" state with inhomogeneous Kondo screening strength and the charge density modulation. These features are experimentally measurable and thus may help to establish the relevance of the spin-liquid correlations to heavy fermion materials.  相似文献   

9.
Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.  相似文献   

10.
We present the first measurements of the Berry phase in a superconducting Cooper pair pump. A fixed amount of Berry phase is accumulated to the quantum-mechanical ground state in each adiabatic pumping cycle, which is determined by measuring the charge passing through the device. The dynamic and geometric phases are identified and measured quantitatively from their different response when pumping in opposite directions. Our observations, in particular, the dependencies of the dynamic and geometric effects on the superconducting phase bias across the pump, agree with the basic theoretical model of coherent Cooper pair pumping.  相似文献   

11.
We consider the formation and the Kondo effect of local magnetic moments in the Anderson-Hubbard model with off-diagonal disorder. The existence of moments at sites weakly coupled to the environment is deduced in effective medium approximation. The distribution of moments is calculated both deep in the metallic phase and near the metal-insulator transition. We discuss the Kondo quenching of the moments and derive a distribution of local Kondo temperatures.  相似文献   

12.
13.
In this paper, we investigate the Berry phase of many-body system in the time-dependent representation. The formula of Berry phase of many-body system calculating in the time-dependent representation is derived. In this scenario, the Berry phase can be decomposed into two terms, which have different physical meanings respectively. Using these formula, we calculated the Berry phase for the many-spin system coupled by the XXZ exchange interaction. The results show that the Berry phase consists of two contributions which can be interpreted as the flux of a nonquantized monopole and the flux of a Dirac ring respectively.  相似文献   

14.
The unique linear density of state around the Dirac points for the honeycomb lattice brings much novel features in strongly correlated models. Here we study the ground-state phase diagram of the Kondo lattice model on the honeycomb lattice at half-filling by using an extended mean-field theory. By treating magnetic interaction and Kondo screening on an equal footing, it is found that besides a trivial discontinuous first-order quantum phase transition between well-defined Kondo insulator and antiferromagnetic insulating state, there can exist a wide coexistence region with both Kondo screening and antiferromagnetic orders in the intermediate coupling regime. In addition, the stability of Kondo insulator requires a minimum strength of the Kondo coupling. These features are attributed to the linear density of state, which are absent in the square lattice. Furthermore, fluctuation effect beyond the mean-field decoupling is analyzed and the corresponding antiferromagnetic spin-density-wave transition falls into the O(3) universal class. Comparatively, we also discuss the Kondo necklace and the Kane-Mele-Kondo (KMK) lattice models on the same lattice. Interestingly, it is found that the topological insulating state is unstable to the usual antiferromagnetic ordered states at half-filling for the KMK model. The present work may be helpful for further study on the interplay between conduction electrons and the densely localized spins on the honeycomb lattice.  相似文献   

15.
Yue Zhou 《Optics Communications》2008,281(20):5278-5281
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously, and can also cause sudden change of the Berry phase for some weak magnetic field cases.  相似文献   

16.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

17.
We compare different approximation schemes for investigating ferromagnetism in the periodic Anderson model. The use of several approximations allows for a detailed analysis of the implications of the respective methods, and also of the mechanisms driving the ferromagnetic transition. For the Kondo limit, our results confirm a previously proposed mechanism leading to ferromagnetic order, namely an RKKY exchange mediated via the formation of Kondo screening clouds in the conduction band. The contrary case is found in the intermediate-valence regime. Here, the bandshift correction ensuring a correct high-energy expansion of the self-energy is essential. Inclusion of damping effects reduces stability of the ferromagnetic phase. Received 5 June 2000 and Received in final form 3 August 2000  相似文献   

18.
We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.  相似文献   

19.
We use the Popov-Fedotov representation of spin operators to construct an effective action for a Kondo lattice model with quenched disorder at finite temperatures. We study the competition between the Kondo effect and frozen spin order in Ising-like spin glass. We present the derivation of new mean-field equations for the spin-glass order parameter and analyze the effects of screening of localized spins by conduction electrons on the spin-glass phase transition.  相似文献   

20.
We study the complex Berry phases in non-Hermitian systems with parity- and time-reversal $\left({ \mathcal P }{ \mathcal T }\right)$ symmetry. We investigate a kind of two-level system with ${ \mathcal P }{ \mathcal T }$ symmetry. We find that the real part of the the complex Berry phases have two quantized values and they are equal to either 0 or π, which originates from the topology of the Hermitian eigenstates. We also find that if we change the relative parameters of the Hamiltonian from the unbroken-${ \mathcal P }{ \mathcal T }$-symmetry phase to the broken-${ \mathcal P }{ \mathcal T }$-symmetry phase, the imaginary part of the complex Berry phases are divergent at the exceptional points. We exhibit two concrete examples in this work, one is a two-level toys model, which has nontrivial Berry phases; the other is the generalized Su–Schrieffer–Heeger (SSH) model that has physical loss and gain in every sublattice. Our results explicitly demonstrate the relation between complex Berry phases, topology and ${ \mathcal P }{ \mathcal T }$-symmetry breaking and enrich the field of the non-Hermitian physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号