首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline/Zn0.5Cu0.5Fe2O4 nanocomposite was synthesized by a simple, general and inexpensive in-situ polymerization method in w/o microemulsion. The effects of polyaniline coating on the magnetic properties of Zn0.5Cu0.5Fe2O4 nanoparticles were investigated. The structural, morphological and magnetic properties of as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM) and magnetic measurements. The morphology analysis confirmed that polyaniline was deposited on the porous surface of magnetic Zn0.5Cu0.5Fe2O4. It was shown that the saturation magnetization and coercivity of Zn0.5Cu0.5Fe2O4 decreased after polyaniline coating, which can be interpreted by the interparticle dipole–dipole interactions that contributed to magnetic anisotropy and changed the magnetic properties of the nanoparticles. PACS  74.25.Ha; 81.05.-t; 81.05.Lg  相似文献   

2.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

3.
The correlation between temperature treatment conditions and the ratio of components in nanostructured fibrous powders with a composition of ZrO2-Y2O3-Al2O3 and their porous crystal structure and physicochemical properties is studied. The dependences of the ratio between zirconia tetragonal and monoclynic phases on the treatment temperature and the alumina content are found to have a nonmonotonic character. The growth of zirconia crystallite size is suppressed by introduced nanocrystalline alumina in a temperature range of 600–1200°C, which is caused by the processes of ternary solid solution formation. The bulk and picnometric density values of materials are proportional to the temperature of heat treatment. The temperature dependence of the specific surface and the size of oxide grain particles has an inversely proportional character. With increasing alumina content in the powders, the specific surface increases, while the picnometric and bulk densities decrease.  相似文献   

4.
We studied the structure and magnetic properties of porous multilayered Co/Pd films deposited on the templates of anodized Al2O3 with a specific surface morphology that is characterized by a cellular–porous structure with several pores inside each cell. X-ray diffraction analysis and reflectometry are used to study the peculiarities of the formation of phases in deposited films. The effect of morphological features of porous Co/Pd films on their magnetoanisotropic properties and magnetization reversal processes (magnetization reversal mechanisms, domain structure of films, and coercive field H c ) is revealed by SQUID magnetometry and magnetic force microscopy.  相似文献   

5.
The magnetic properties of the binuclear nitrosyl-iron complexes Fe2(SC3H5N2)2(NO)4 are investigated. It is demonstrated that several types of particles, such as dimers with a pair of spins 1/2, dimers with a pair of spins 5/2, and paramagnetic particles with spin 3/2, make a contribution to the magnetic properties of the complexes. A decrease in the temperature below 25 K leads to a change in the shape of the EPR spectra corresponding to these dimers, so that Lorentzian lines (homogeneous broadening) transform into Gaussian lines (inhomogeneous broadening). This is accompanied by a stepwise change in the EPR line width and g factors. The change in the line shape indicates that complexes become asymmetric at low temperatures, possibly, due to the decrease in the spin exchange frequency below the frequency of the microwave field of the spectrometer.  相似文献   

6.
Structural aspects of powders containing magnetic nanoparticles Fe3O4/CoFe2O4 with the anticipated “core-shell” structure are considered by means of comparative analysis with individual particles of Fe3O4, CoFe2O4 in accordance of data obtained from X-ray powder diffraction and small-angle scattering of X-ray (synchrotron) radiation and neutrons. It is shown that magnetic particles in the powders under study have a strong polydispersity and form complex aggregates. Characteristic sizes of the crystallites, as well as a ratio of magnetite to cobalt-ferrite in the composition of the Fe3O4/CoFe2O4 particles were evaluated from the analysis of the diffraction peaks. Аnalyzing the data on small-angle scattering, the dimensional characteristics of particles and aggregates, as well as the volume fraction of the last ones in the powders, have been obtained. Fractal dimensions of aggregates are determined. A significant difference is observed in the scattering on Fe3O4/CoFe2O4 particles and the total scattering consisting of partial contributions to scattering on individual magnetite (Fe3O4) and cobalt-ferrite (CoFe2O4) powders, which does not exclude the formation of the “core-shell” structure.  相似文献   

7.
The equation of the magnetization of a hexagonal crystal is derived for the first time for an arbitrary orientation of the external magnetic field relative to the crystallographic c axis. In order to clarify the magnetization mechanism for a real ensemble of small particles in the framework of the given problem, surface anisotropy (which is significant for nanosize objects) was taken into account along with crystalline magnetic anisotropy and anisotropy in the particle shape. Model computer experiments prove that the magnetization curves for nanocrystals oriented in a polar angle range of 65–90° exhibit an anomaly in the form of a jump, indicating a first-order spin-reorientation phase transition. This explains a larger steepness of the experimental curve reconstructed taking into account the interaction between particles as compared to the theoretical dependence obtained by Stoner and Wohlfarth [IEEE Trans. Magn. MAG 27 (4), 3469 (1991)]. An analysis of variation of the characteristic anisotropy surface and its cross section with increasing ratio |K2|/K1 of the crystalline magnetic anisotropy constants upon a transition from a macroscopic to a nanoscopic crystal shows that surface anisotropy leads to a change in the magnetic structure. As a result, an additional easy magnetization direction emerges in the basal plane apart from the easiest magnetization direction (along the c axis). The direction of hard magnetization emerges from the basal plane, the angle of its orientation relative to the c axis being a function of the ratio | K2|/K1.  相似文献   

8.
The micrometer-sized ZnCo2O4 parallelepipeds with a hierarchical porous structure have been fabricated by a simple two-step procedure, i.e., the synthesis of the Zn1/3Co2/3CO3 parallelepipeds and the subsequent calcination. When tested in lithium-ion batteries (LIBs), the hierarchical porous ZnCo2O4 parallelepipeds could exhibit a reversible capacity of >860 mAh g?1 at a current density of 0.1 C. This clearly demonstrates the potential use of the hierarchical porous ZnCo2O4 parallelepipeds in LIBs. The high electrochemical performance of the hierarchical porous ZnCo2O4 parallelepipeds might originate from the unique porous structure which consists of the secondary ZnCo2O4 particles. First, the porous structure allows for a better accessibility of the active material to the Li+ ion storage, favoring easier diffusion of electrolyte in and out of electrode material. Second, the presence of the secondary particles shortens a pathway of Li+ diffusion in ZnCo2O4, facilitating the better utilization of the active material.  相似文献   

9.
The magnetic properties of the magnetite Fe3O4(110) surface have been studied by spin resolved Auger electron spectroscopy (SRAES). Experimental spin resolved Auger spectra are presented. The results of calculation of Auger lines polarization carried out on the basis of electronic state density are presented. Problems related to magnetic moments of bivalent (Fe2+) and trivalent (Fe3+) ions on the Fe3O4(110) surface are discussed. It is established that the deposition of a thin bismuth film on the surface results in significant growth of polarization of iron Auger peaks, which is due to additional spin-orbit scattering of electrons by bismuth atoms.  相似文献   

10.
Vortex excitations have been detected at temperatures both below and above the critical temperature when investigating local magnetic fields on the surface of a Bi2Sr2Ca2Cu3O10 single crystal by means of an electron paramagnetic resonance (EPR) probe. A thin layer of a diphenyl picrylhydrazyl organic radical deposited on the crystal surface is used as the EPR probe. A narrow EPR signal makes it possible to detect weak distortions of the magnetic field appearing at TT c. The analysis of the temperature dependences of the resonance field and the EPR linewidth is thebasis of the assumption of the vortex nature of magnetic excitations in this temperature range.  相似文献   

11.
Spherical LiNi1/3Co1/3Mn1/3O2 particles were successfully synthesized using Na2CO3 as a precipitant. Electrochemical measurements indicate that the as-synthesized spherical particles deliver a high reversible capacity of above 180 mAh g?1 at 0.1 C in the voltage range of 2.8–4.4 V and display an excellent cyclic performance at 0.5 C. However, unsatisfactory rate capability was detected for the as-prepared spherical particles. The reason for the unsatisfactory rate capability was investigated through a comparison of the properties of the as-synthesized spherical particles versus the ball-milled samples via a combination of specific surface areas test, electronic conductivity measurement, and electrochemical impedance spectroscopy. The results show that both the rate capabilities of cathode materials and the electronic conductivities of the mixtures of active material, conductive additive, and binder are highly improved when the secondary spherical particles were broken, indicating that the poor electronic conductivity of electrode caused by the large secondary spherical particles with a great amount of nano-pores is a significant factor for the unsatisfactory rate capability.  相似文献   

12.
High-frequency losses in the strongly anisotropic layered superconductor Bi2Sr2CaCu2O8 are measured at 600 MHz under a magnetic field rocking about the ab plane. Anomalies in losses and hysteretic phenomena are found while performing periodic rocking, i.e., cycling the magnetic field component normal to the sample surface. Based on these observations, conclusions are drawn about the nature of magnetic-flux penetration into the superconductor. It is found that, in the range between 60 K and T c , the dynamics of magnetic-flux vortex lines normal to the ab plane in the presence of a constant magnetic field applied parallel to this plane is governed by the critical penetration field H c ⊥* and the surface barrier in the presence of thermally activated vortex motion (giant flux creep). The dependences of H c1 ⊥* and the characteristic field of the surface barrier on the magnitude of the parallel magnetic field are measured.  相似文献   

13.
The composition and magnetic properties of the powders extracted from CoFe2O4 aqueous suspensions and the CoFe2O4/PVA (PVA is polyvinyl alcohol) nanocomposites with a cobalt ferrite content of 10–30 wt % have been investigated using Mössbauer spectroscopy, transmission electron microscopy, and vibration magnetometry. The cationic formulas of the cobalt ferrites synthesized have been determined. The differences between samples synthesized at temperatures of 72.5 and 82.5°C have been revealed. The specific features of the observed changes in the agglomeration of CoFe2O4 particles after introducing into the PVA matrix have been studied. It has been shown that the iron ion distribution determined by Mössbauer spectroscopy in octahedral and tetrahedral lattice sites correlates with vibration magnetometry data.  相似文献   

14.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

15.
The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol–gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core–shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core–shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.  相似文献   

16.
The results of investigations of the magnetization, susceptibility, and magnetic-field-induced changes in the entropy of polycrystalline manganite (La0.6Ca0.4)0.9Mn1.1O3 near the magnetic phase transition have been presented. Magnetic measurements have been carried out at temperatures in the range from 210 to 310 K in magnetic fields of up to 9 T. The magnetocaloric effect has been revealed by measuring the magnetic-field dependences of magnetization. The magnitude of the magnetocaloric effect is compared with similar results obtained for other manganites.  相似文献   

17.
(La0.7Sr0.3MnO3) x /(YBa2Cu3O7) y composites were prepared by mixing La0.7Sr0.3MnO3 powders and the sol–gel-derived YBa2Cu3O7 matrix, followed by high-temperature calcinations. Their structural, magnetic properties and magnetoresistance effect have been investigated systematically. A giant positive magnetoresistance (PMR) at low magnetic field is observed at low temperatures. In the case of (La0.7Sr0.3MnO3)1/(YBa2Cu3O7)9 composite, the PMR achieves 260% under a magnetic field of 5800 Oe. However, the PMR value sharply decreases with increasing temperature and no magnetoresistance effects are found above metal-insulator transition temperature. The enhancement of spin-dependent scattering at the grain boundaries should be responsible for the observed PMR. In addition, the temperature dependence of resistance under magnetic field could be explained by the competition between diamagnetism and paramagnetism in YBCO phase. At low temperature, the diamagnetism is predominant over paramagnetism and the interface scattering between LSMO grains is enhanced correspondingly. As a result, the low-temperature resistance increases and large PMR appears.  相似文献   

18.
Single crystals of the Tb0.75Ho0.25Fe3(BO3)4 ferroborate have been grown by the group method from a solution–melt based on bismuth trimolybdate. The magnetic and magnetoelectric properties of the ferroborate single crystals have been investigated in the temperature range from 4.2 to 300 K and in magnetic fields up to 9 T. Magnetically, this material is an antiferromagnet with the Néel temperature T N = 38.8 K and easy-axis anisotropy. The magnitude of the magnetoelectric polarization has been found to be more than 1.5–2.0 times greater than the sum of the polarizations induced by the magnetic field for the ferroborates TbFe3(BO3)4 and HoFe3(BO3)4 taken in the corresponding shares.  相似文献   

19.
Metastable solid solutions (SS) Mn3FeTiSbO9 and Mn4FeTi2SbO12 with the ilmenite structure (space group R\(\bar 3\)) have been prepared by quenching at normal conditions. The compositions of the compounds have been justified using EDX spectroscopy and X-ray diffraction. The magnetic properties of SSs have been analyzed by comparison with ferrimagnetic ilmenite Mn2FeSbO6 (TN = 269 K) as a natural mineral and ceramics obtained at high pressure and high temperature. The solid solutions have been characterized as dilute magnetic systems formed as a result of substitution of nonmagnetic cations Ti4+ for a part of Fe3+ and Sb5+ cations. Mn3FeTiSbO9 is considered as a ferromagnetic with TN = 171 K and Mn4FeTi2SbO12 as a magnetic with the concentration of magnetic clusters below the percolation threshold.  相似文献   

20.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号