首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capillary NMR spectroscopy (CapNMR) was used to characterize 13 new cardenolides and related steroids from a severely mass-limited natural products sample derived from a rare firefly, Lucidota atra. These analyses were carried out on only partially purified samples, each containing 20-100 mug of up to three steroids. Compared to other NMR spectroscopic techniques, CapNMR provided an up to 3-fold gain in sensitivity while maintaining very high spectral quality, which was essential for the identification of the L. atra steroids. We show that CapNMR allows for routine 1H and 13C NMR spectroscopic characterization of small molecule samples containing as little as 40 nmol of material.  相似文献   

2.
In double resonance spectra, transitions between energy levels of a nuclear spin system are measured in the presence of two (or more) oscillating magnetic fields. Experiments of this nature form the basis of what is nowadays one of the most important techniques of NMR spectroscopy. Depending on the method selected, they can be used to unravel complex spectra, to measure hidden or weak resonances, or to determine the relative signs of coupling constants, as well as in stereochemical or kinetic studies. This wide and steadily growing range of applications of double resonance is described with the aid of specifilc examples.  相似文献   

3.
Structural biology has made important contributions to the understanding of biological processes. In recent years an increasing amount of structural information has also been derived from NMR spectroscopic studies, often with special emphasis on dynamic aspects. The introduction of three- and four-dimensional techniques has greatly simplified protein structure determination by NMR Spectroscopy, which has in fact become routine. In the past it was more of an art to interpret the complicated NOESY spectra of proteins, but the application of three-dimensional techniques now makes the interpretation of protein spectra straightforward. In this review we discuss the most important multidimensional NMR techniques along with suitable applications. The emphasis is put less on the discussion of individual pulse sequences than on their application to the structure determination of proteins.  相似文献   

4.
An exact knowledge of the structure, dynamics, and reactions of molecules provides the key to understand their functions and properties. NMR spectroscopy has developed, through the introduction of two-dimensional methods, into the most important method for the investigation of these questions in solution. A great variety of different techniques is available. However, for their successful application not only the appropriate equipment is required, but also the right choice of experiments and optimum measurement parameters, as well as a careful evaluation of the spectra. This contribution describes the necessary background for modern NMR spectroscopy. With the aid of the so-called product operator formalism it is possible to understand pulsed Fourier transform NMR spectroscopy both qualitatively and quantitatively. Very few, readily understandable assumptions are sufficient for confident application of these methods. This article attempts to introduce in a simple manner this formalism as well as phase cycles necessary for the understanding of pulse sequences, and to train the reader through the discussion of several 2D NMR techniques. An overview of the most important techniques is given in the second part of this article.  相似文献   

5.
Polymeric chiral liquid-crystalline solvents based on homopolypeptides are of interest with the view to discriminate between enantiomeric pairs of chiral hydrocarbons using proton-decoupled deuterium one- and two-dimensional NMR spectroscopy at natural abundance level. This method offers the major advantage that neither chemical modification nor isotopic labelling of the solutes to be studied is required. Chiral differentiation between optical isomers is observed through a difference in residual deuterium quadrupolar splittings. The spectroscopic separations and the S/N ratio from the spectra are usually large enough to measure the enantiomeric excess with an accuracy varying between 5 to 10 %. This analytical approach is successfully applied to a large collection of chiral, rigid or flexible unsaturated as well as saturated hydrocarbons, including cases of axial chirality, atropoisomerism, and moieties existing as a mixture of enantiomers interconverting by ring inversion. Using the results reported in literature, a systematic comparison with other analytical strategies (NMR, GC, HPLC, VCD) is made and discussed. Also, a tentative proposal to rationalise the various results in terms of chiral differentiation and enantioselective shape recognition is presented. We show that this original tool provides an attractive and incisive alternative to the existing analytical techniques for studying nonfunctionalised chiral materials.  相似文献   

6.
Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin–spin J‐coupling interaction (J‐modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J‐modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications.  相似文献   

7.
Until a few years ago, solid-state nuclear resonance yielded spectra containing broad lines only. Meanwhile, CP/MAS-NMR spectroscopy has provided a method which gives narrow nuclear resonance lines from a solid-state specimen as well. Using this technique, it is now possible to produce spectra of “rare” nuclei (13C, 29Si, 15N etc.) which are resolved in terms of chemical structure. The analytical capabilities of NMR spectroscopy can be applied to the solid state: it may be that it is necessary to identify compounds in the solid state because, for example, a solvent would alter the coordination sphere, or that it is desired to monitor chemical reactions in the solid state, for example the baking of an enamel. Where a substance in the solid state is concerned, high-resolution 13C-NMR spectroscopy provides not only information about the chemical structure, but also about the solid state itself. To mention just a few examples, information on the conformation, crystal structure and molecular dynamics, as well as molecular miscibility is given. This opens up a broad spectrum of applications, from a statement concerning the crystal modification of an active substance in ready-to-use pharmaceutical preparations, e.g. tablets, to the question of whether two polymers are miscible with one another at a molecular level.  相似文献   

8.
NMR spectroscopy is an effective method not only for examining liquid samples but also for characterizing molecular sturcture, order and dynamics in amorphous and ordered solids. Recent developments in the area of solid-state NMR spectroscopy span from model-dependent studies of conventional one-dimensional spectra to the more definitive two-dimensional (2D) spectra which provide more specific information. For example, with 2D-NMR spectroscopy it is possible to determine the orientational distribution functions of molecular segments in drawn polymers and to distinguish different mechanisms of complex molecular motions. Following an introduction to basic NMR spectroscopy, an overview of the current state-of-the-art of 2D methods in solid-state NMR spectroscopy is presented and demonstrated with selected examples.  相似文献   

9.
Three different molecular sieves were synthesised and characterized using31P and27Al magic angle spinning nuclear magnetic resonance (31P and27Al MAS NMR) spectroscopy and acidity measurement techniques. The synthesized solids were: a silicoaluminophosphate (SAPO-11) sample, a chromium-substituted silicoaluminophosphate (CrAPSO-11) sample and a chromium-supported SAPO-11 (Cr/SAPO-11) sample. Significant differences were observed between the CrAPSO-11 MAS NMR spectra and the spectra for the other two solids. The differences can be understood in terms of a different chemical environment for the Al(III) and P(V) ions in the molecular sieve framework, as a result of a different type of interaction, probably with substituted chromium ions in the framework. The acidity measurements were in agreement with the MAS NMR spectroscopy results, providing further evidence for the incorporation of chromium ions into the molecular sieve framework.  相似文献   

10.
The number of possible applications of NMR spectroscopy has rapidly increased during the past few years. New fields of applications have been opened by the development of supraconducting solenoids and various spin-decoupling techniques and by the method of “pulsed Fourier transform NMR-spectroscopy”. These methods originate mainly from progress in instrumentation. Recently, another “technique” has been introduced into NMR spectroscopy, which—principally on the basis of chemical and spectroscopic experience—is much less expensive but nevertheless useful. The basic principles, background, and most important applications of this method, known as the “NMR-shift-reagent technique”, form the subject of this paper.  相似文献   

11.
In addition to the static parameters of the chemical shifts and coupling constants, which serve as a source of knowledge for molecular structure and stereochemistry, an NMR spectrum can frequently furnish dynamic quantities characterizing relaxation and exchange phenomena. The information about nuclear switching processes has proved to be particularly useful in practice for the detection of internal molecular motions and for the estimation or determination of the corresponding energy barriers. A plethora of studies of this nature has in the past been performed on simple proton spectra. Methodological developments of recent years have led to a significant reduction of the effort required for the quantitative dynamic evaluation of NMR spectra arising from complex spin systems or involving other nuclei. In many cases it has, moreover, become possible to extract detailed mechanistic information inaccessible by other means. The practical execution of such analyses will be explained and illustrated by a selected number of applications.  相似文献   

12.
The introduction of Fourier transform methods has not only remarkably enhanced the sensitivity of high-resolution NMR spectroscopy, thus allowing measurements to be made on less sensitive nuclei of the Periodic Table, but also has paved the way for the development of a large number of new experimental techniques. On the one hand, procedures already known have been improved and can now be performed more rapidly, and, on the other, completely new experimental approaches have become available. This situation resulted mainly from the introduction of programmable pulse transmitters and the separation of the experiment into preparation, evolution, and detection. In particular, the concept of two-dimensional spectroscopy has opened up new possibilities important for the analysis of complicated spectra and is able to provide information previously not accessible. As elsewhere, optimum application of the techniques and correct interpretation of the results require sound understanding of the underlying physical principles. Since a rigorous mathematical treatment is complicated and does not necessarily improve the comprehensibility, this article attempts to give an illustrative presentation of the new pulse techniques within the framework of the Bloch vector model. After a short introduction covering the basic principles, one-dimensional pulse techniques that can be applied using standard experimental equipment are dealt with. The main areas of application are signal assignment, sensitivity enhancement for measurements on less abundant nuclei, and selective excitation of individual resonances. Subsequently, the various techniques of two-dimensional NMR spectroscopy are treated: these enable shift correlations for different types of nuclei to be made, the presentation of spin multiplets without overlap, and the analysis of geometrical relations as well as of chemical exchange phenomena.  相似文献   

13.
Alongside the numerous applications of NMR spectroscopy to structural elucidation in analytical chemistry, and to biochemical and morphological studies by NMR tomography, NMR microscopy makes possible a whole new range of applications. These include imaging, the investigation of biological objects such as plants and small animals, and also the observation of microscopic structures and structural changes in polymers and ceramics. NMR spectroscopy can also be conducted combinationally as volume-selective spectroscopy, whereby it is possible to spatially resolve the NMR-specific parameters: spin density ?, chemical shifts δ, and the relaxation times T1 and T2. The numerous well developed methods available make it possible to study dynamic processes by fast imaging with a temporal resolution in milliseconds. This not only allows the imaging of moving objects without incurring movement artefacts but also the measurement of diffusion constants in isotropic and anisotropic diffusion—in the latter case allowing, in principle, the determination of the complete diffusion tensor. The spatially resolved measurement of the relaxation times yields information on molecular mobility and bonding, e. g. the bonding of water, or other solvents, to polymers, the mobility of fluids in polymers or ceramics, or the three-dimensional evaluation of pore size in porous materials. In biomedicine, NMR microscopy allows the observation of growth on the cellular level, the study of embryos, and the development of therapeutic methods in animal experiments. It can lead to a drastic reduction in the number of animal experiments, and in combination with volume-selective spectroscopy gives valuable information on in-vivo metabolism.  相似文献   

14.
Low-cost, high-accuracy characterization of polymeric materials is critical for satisfying societal demand for high-quality materials with ultra-specific requirements. Low-field nuclear magnetic resonance (NMR) spectroscopy presents an opportunity to replace costlier or destructive methods while utilizing nondeuterated solvents. Many factors play key roles in the ability of low-field NMR spectroscopy to accurately analyze polymer systems. Sample characteristics such as polymer concentration, composition, and molecular weight all directly affect the capability of low-field spectrometers to accurately determine polymer microstructure compositions. In addition to inherent sample properties affecting instrumental accuracy, many choices concerning instrumental parameters (including number of scans, relaxation delay, spectral width, and points per scan) must be made that impact the quality of the resulting NMR spectra. In this work, we benchmark the capability of a 60-MHz low-field NMR spectrometer for analyzing polymer materials using mixed microstructure polyisoprenes as a model polymer system of interest. The aforementioned critical sample and instrumental variables are varied, and we report on the ability to quantitatively characterize polyisoprene microstructure to within 1–2% of a higher field NMR spectrometer (400 MHz). We anticipate our findings to be generally applicable to other low-field spectrometers of similar field strength and other polymer systems.  相似文献   

15.
Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic fields to create spectral resolution among different proton species. Although proton signals can also be detected at low fields the spectrum exhibits a single line if J-coupling is stronger than chemical shift dispersion. In this work, we demonstrate that the spectra can nevertheless be acquired in this strong-coupling regime using a novel pulse sequence called spin-lock induced crossing (SLIC). This techniques probes energy level crossings induced by a weak spin-locking pulse and produces a unique J-coupling spectrum for most organic molecules. Unlike other forms of low-field J-coupling spectroscopy, our technique does not require the presence of heteronuclei and can be used for most compounds in their native state. We performed SLIC spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ and show that the simulated SLIC spectra agree well with measurements.  相似文献   

16.
对科学产生最大影响的分析方法是核磁共振技术(NMR),它被广泛用于许多领域.本文结合作者的研究结果评述了NMR在组合化学中的应用,着重于NMR在固相合成的应用、液态NMR和NMR在高通量筛选中的应用.  相似文献   

17.
Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two‐field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low‐field dimension. Two‐field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.  相似文献   

18.
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.  相似文献   

19.
Modern methods of NMR spectroscopy, in particular the two-dimensional techniques, offer new chances for structure determinations in the field of organolithium compounds, where the combination of 1H-, 13C-, and 6(7)Li-NMR spectroscopy is an especially useful feature. Chemical shift correlations which also include the lithium nuclei allow a complete assignment of the 1H-, 13C-, and 6Li-NMR spectra and thereby a better characterization of the various aggregates and complexes present in solution. Spatial proximities of 6Li and 1H can be detected by nuclear Overhauser experiments, and 6(7)Li-NMR exchange spectroscopy can provide new information with regard to the mechanisms and energetics of dynamic processes like aggregate interchange and complexation. After a short resumé of the experimental aspects of the NMR spectroscopy of organolithium compounds and a discussion of the NMR parameters of these systems, new experimental techniques are presented. Areas of application of these newly conceived one- and two-dimensional NMR experiments are illustrated with selected examples. The results show that even more detailed information about the structure and reactivity of organolithium compounds, which are so important for organic synthesis, can be expected in the future.  相似文献   

20.
Diffusion‐ordered multidimensional NMR spectroscopy is a valuable technique for the analysis of complex chemical mixtures. However, this method is very time‐consuming because of the costly sampling of a multidimensional signal. Various sparse sampling techniques have been proposed to accelerate such measurements, but they have always been limited to frequency dimensions of NMR spectra. It is now revealed how sparse sampling can be extended to diffusion dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号