首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Currently, most detailed chemical kinetic mechanisms for combustion are still not comprehensive enough and update of key reaction rate is still required to improve the combustion mechanisms. The development of systematic mechanism reduction methods have made significant progress, and have greatly facilitated analysis of the reaction mechanisms and identification of important species and key reactions. In the present work, time-integrated element flux analysis is employed to analyze a skeletal combustion mechanism of a tri-component kerosene surrogate mixture, consisting of n-decane, n-propylcyclohexane, and n-propylbenzene. The results of element flux analysis indicate that major reaction pathways for each component in the surrogate model are captured by the skeletal mechanism compared with the detailed mechanism. After that, sensitivity analysis (SA) and chemical explosive mode analysis (CEMA) are conducted to identify the dominant ignition chemistry. The SA and CEMA results demonstrate that the ignition of n-decane and n-propylcyclohexane is sensitive only to the oxidation chemistry of H2/CO and C1–C4 small hydrocarbons, while the ignition of n-propylbenzene is very sensitive to the initial reactions of n-propylbenzene and related aromatic intermediates. This demonstrates that the hierarchic structure should be maintained in the reduction of detailed mechanism of substituted aromatic fuels. The skeletal mechanism is further reduced by combining the computational singular perturbation (CSP) method and quasi steady state approximation (QSSA). A 34-species global reduced mechanism is obtained and validated over a wide range of parameters for ignition.  相似文献   

2.
In this paper, species versus temperature profiles were measured during the oxidation of 1,3-butadiene in a jet-stirred reactor (JSR) at 1 atm, at different equivalence ratios (φ = 0.5, 1.0 and 2.0), in the temperature range 600 – 1020 K. Both synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) and gas chromatography (GC) methods were used to analyze the species. The experimental results show that a large proportion of the products are aldehydes (formaldehyde, acetaldehyde, acrolein, etc.) and ketenes (ketene, methyl-ketene), with acrolein being one of the major products. Moreover, furan, 1,3-cyclopentadiene and benzene are also present as intermediates in significant amounts. The reaction pathways leading to the formation of these species are discussed in detail. A new detailed mechanism, NUIGMech1.3, was developed to simulate these new data as well as other experimental data available in the literature. The validation results indicate that quantum calculations are also needed to explore the formation of some important species formed in the oxidation of 1,3-butadiene. Overall, the new 1,3-butadiene mechanism agrees well with various experimental data in the low- to high-temperature regimes and at different pressures. Flux and sensitivity analyses show that 1,3-butadiene shares some common reaction chemistry pathways with 1- and 2-butene via Ḣ atom and HȮ2 radical addition to the C = C double bond in 1,3-butadiene, reactions which are important for both systems. The low temperature chemistry of 1,3-butadiene is mainly controlled by the reaction pathways of ȮH radical addition to the C = C double bond of the fuel molecule. The 1-buten-4-ol-3-yl radicals so formed subsequently add to O2 and react via the Waddington mechanism, which is important in accurately simulating the oxidation and auto-ignition of 1,3-butadiene at engine relevant conditions.  相似文献   

3.
A detailed kinetic model is proposed for the combustion of normal alkanes up to n-dodecane above 850 K. The model was validated against experimental data, including fuel pyrolysis in plug flow and jet-stirred reactors, laminar flame speeds, and ignition delay times behind reflected shock waves, with n-dodecane being the emphasis. Analysis of the computational results reveal that for a wide range of combustion conditions, the kinetics of fuel cracking to form smaller molecular fragments is fast and may be decoupled from the oxidation kinetics of the fragments. Subsequently, a simplified model containing a minimal set of 4 species and 20 reaction steps was developed to predict the fuel pyrolysis rate and product distribution. Combined with the base C1-C4 model, the simplified model predicts fuel pyrolysis rate and product distribution, laminar flame speeds, and ignition delays as close as the detailed reaction model.  相似文献   

4.
The paper introduces a generalized formulation for the computation of the relative contribution of each elementary reaction to the total entropy production, which has been proposed as a measure of the importance of elementary reactions and used for the reduction of detailed chemical reaction mechanisms. The reduction method is extended for the cases where the principle of detailed balance does not hold or apply, namely in the case of irreversible reactions or when the reverse rate constants are not computed via the thermodynamic equilibrium constants. Using a mechanism for n-butane consisting exclusively of reversible reactions, the new formulation is compared to the original one, and then applied for the construction of a skeletal mechanism for n-dodecane starting from a detailed mechanism which includes predominantly irreversible reactions. The skeletal scheme is found to accurately capture the ignition delay times over an extended range of pressure, initial temperature and equivalence ratio, the steady-state temperature as function of the residence time in a non-isothermal adiabatic perfectly stirred reactor, and the laminar flame speed of atmospheric flames at different unburned mixture temperatures and equivalence ratios.  相似文献   

5.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

6.
7.
The combustion of stoichiometric Ethyl-hexyl-nitrate (EHN)-doped n-heptane/oxygen/argon and (EHN)-doped n-heptane/air mixtures, respectively, was investigated in a low-pressure burner with a molecular-beam mass spectrometer and ignition delay-time (τign) measurements were performed in a high-pressure shock tube. The experiments with the low-pressure flame were used for the determination of the flame structure including concentration profiles of reactants, products and important intermediates in the flame. The shock tube experiments provided τign for a temperature range of 690 K ? T ? 1275 K at a pressure of 40 ± 2 bar for stoichiometric and lean mixtures under engine relevant conditions. A chemical mechanism for n-heptane/EHN mixtures was developed from an automatically generated mechanism for n-heptane by manually adding reactions to describe the influence of EHN. This mechanism was validated against the shock-tube data for various temperatures, levels of EHN-doping and equivalence ratios by homogeneous reactor calculations.The ignition delay times predicted by the model agree well with the shock tube results for a large range of temperatures, equivalence ratios and EHN concentrations. The influence of EHN onto ignition delay was largest in the low-temperature regime (770-1000 K).Numerical analysis suggests that the prevalent reason for the ignition-enhancing effect of EHN is the formation of highly reactive heptyl radicals by thermal decomposition of EHN. Due to this comparatively simple and generic mechanism, EHN is expected to have a similar ignition-enhancing effect also for other hydrocarbon fuels.  相似文献   

8.
In order to better understand the reactions responsible for the formation and growth of polycyclic aromatic hydrocarbons (PAH) from solid fuels, we have performed pyrolysis experiments in an isothermal laminar-flow reactor (at temperatures of 600-1000 °C and a fixed residence time of 0.3 s) with catechol, a model fuel representative of the aromatic moieties in coal and biomass fuels; 1,3-butadiene, a major product of biomass pyrolysis; and with catechol and 1,3-butadiene together (in a catechol-to-1,3-butadiene molar ratio of 0.83). No PAH of ?3 rings are produced at temperatures <700 °C, but PAH production becomes significant at temperatures ?800 °C. Analysis of the higher-temperature reaction products by high-pressure liquid chromatography with diode-array ultraviolet-visible absorbance detection has led to the identification of over 100 PAH (ranging in size to 10 fused aromatic rings) - 47 of which have never before been reported as products of any phenol-type fuel. Quantification of the product yields shows that a much higher percentage of fed carbon is converted to PAH in the catechol-only pyrolysis experiments than in the 1,3-butadiene-only pyrolysis experiments - a result attributable to catechol’s relatively labile O-H bond and capacity for generating oxygen-containing radicals, which accelerate both fuel conversion and the pyrolysis reactions leading to 1- and 2-ring aromatics and PAH. When the two fuels are co-pyrolyzed, the percentage of the total fed carbon converting to PAH is more than two times higher than the amount calculated for the hypothetical case of the two fuels together behaving as a linear combination of the two fuels individually. This elevated production of PAH from the co-pyrolysis experiments reflects not only the reaction-accelerating role of the oxygen-containing radicals but also the efficacy, as growth agents, of the C2 - and especially the C4 - species abundantly present in the catechol/1,3-butadiene co-pyrolysis environment.  相似文献   

9.
n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction.  相似文献   

10.
Recent optical engine studies have linked increases in NOx emissions from fatty acid methyl ester combustion to differences in the premixed autoignition zone of the diesel fuel jet. In this study, ignition of single, isolated liquid droplets in quiescent, high temperature air was considered as a means of gaining insight into the transient, partially premixed ignition conditions that exist in the autoignition zone of a fatty acid methyl ester fuel jet. Normal gravity and microgravity (10−4 m/s2) droplet ignition delay experiments were conducted by use of a variety of neat methyl esters and commercial soy methyl ester. Droplet ignition experiments were chosen because spherically symmetric droplet combustion represents the simplest two-phase, time-dependent chemically reacting flow system permitting a numerical solution with complex physical submodels. To create spherically symmetric conditions for direct comparison with a detailed numerical model, experiments were conducted in microgravity by use of a 1.1 s drop tower. In the experiments, droplets were grown and deployed onto 14 μm silicon carbide fibers and injected into a tube furnace containing atmospheric pressure air at temperatures up to 1300 K. The ignition event was characterized by measurement of UV emission from hydroxyl radical (OH*) chemiluminescence. The experimental results were compared against predictions from a time-dependent, spherically symmetric droplet combustion simulation with detailed gas phase chemical kinetics, spectrally resolved radiative heat transfer and multi-component transport. By use of a skeletal chemical kinetic mechanism (125 species, 713 reactions), the computed ignition delay period for methyl decanoate (C11H22O2) showed excellent agreement with experimental results at furnace temperatures greater than 1200 K.  相似文献   

11.
12.
Recent literature has indicated that experimental shock tube ignition delay times for hydrogen combustion at low-temperature conditions may deviate significantly from those predicted by current detailed kinetic models. The source of this difference is uncertain. In the current study, the effects of shock tube facility-dependent gasdynamics and localized pre-ignition energy release are explored by measuring and simulating hydrogen-oxygen ignition delay times. Shock tube hydrogen-oxygen ignition delay time data were taken behind reflected shock waves at temperatures between 908 to 1118 K and pressures between 3.0 and 3.7 atm for two test mixtures: 4% H2, 2% O2, balance Ar, and 15% H2, 18% O2, balance Ar. The experimental ignition delay times at temperatures below 980 K are found to be shorter than those predicted by current mechanisms when the normal idealized constant volume (V) and internal energy (E) assumptions are employed. However, if non-ideal effects associated with facility performance and energy release are included in the modeling (using CHEMSHOCK, a new model which couples the experimental pressure trace with the constant V, E assumptions), the predicted ignition times more closely follow the experimental data. Applying the new CHEMSHOCK model to current experimental data allows refinement of the reaction rate for H + O2 + Ar ↔ HO2 + Ar, a key reaction in determining the hydrogen-oxygen ignition delay time in the low-temperature region.  相似文献   

13.
Detailed kinetic modeling and flame-sampling molecular-beam time-of-flight mass spectrometry are combined to unravel important pathways leading to the formation of benzene in a premixed laminar low-pressure 1,3-butadiene flame. The chemical kinetic model developed is compared with new experimental results obtained for a rich (? = 1.8) 1,3-butadiene/O2/Ar flame at 30 Torr and with flame data for a similar but richer (? = 2.4) flame reported by Cole et al. [Combust. Flame 56 (1) (1984) 51-70]. The newer experiment utilizes photoionization by tunable vacuum-ultraviolet synchrotron radiation, which allows for the identification and separation of combustion species by their characteristic ionization energies. Predictions of mole fractions as a function of distance from the burner of major combustion intermediates and products are in overall satisfactory agreement with experimentally observed profiles. The accurate predictions of the propargyl radical and benzene mole fractions permit an assessment of potential benzene formation pathways. The results indicate that C6H6 is formed mainly by the C3H3 + C3H3 and i-C4H5 + C2H2 reactions, which are roughly of equal importance. Smaller contributions arise from C3H3 + C3H5. However, given the experimental and modeling uncertainties, other pathways cannot be ruled out.  相似文献   

14.
Shock tube experiments and chemical kinetic modeling were performed to further understand the ignition and oxidation kinetics of various methane-propane fuel blends at gas turbine pressures. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4/C3H8 in ratios ranging from 90/10% to 60/40%. Equivalence ratios varied from lean (? = 0.5), through stoichiometric to rich (? = 3.0) at test pressures from 5.3 to 31.4 atm. These pressures and mixtures, in conjunction with test temperatures as low as 1042 K, cover a critical range of conditions relevant to practical turbines where few, if any, CH4/C3H8 prior data existed. A methane/propane oxidation mechanism was prepared to simulate the experimental results. It was found that the reactions involving CH3O˙, CH32, and ?H3 + O2/HO˙2 chemistry were very important in reproducing the correct kinetic behavior.  相似文献   

15.
本文基于Healy等人建立的正丁烷详细反应机理(230个组分,1328个反应),采用直接关系图法,反应路径分析以及敏感性分析相结合的方法,构建了一个包含83个组分,397个反应的中低温反应动力学骨架模型。路径分析发现,在低温反应中,正丁烷氧化着火主要受链传播反应中的放热循环控制。而在中温反应中,正丁烷及其下游产物正丁基的裂解反应变得重要,大分子裂解后的小分子氧化加快反应进程。本文骨架模型在温度范围550~1050 K、压力范围0.1~3MPa、当量比范围0.5~2.0条件下对着火延迟时间、层流火焰速度、温度以及重要组分浓度分布的预测均与详细机理保持很好的一致性,同时与文献中快压机、定容燃烧弹和搅拌射流反应器的实验结果也吻合较好。  相似文献   

16.
Ignition studies of two C5 esters were performed using a rapid compression facility. Methyl butanoate and ethyl propanoate were chosen to have matching molecular weights and C:H:O ratios while varying the length of the constituent alkyl chains. The effect of functional group size on ignition delay time was investigated using pressure time-histories and high-speed digital imaging. Low-temperature, moderate-pressure conditions were selected for study due to the relevance to low temperature combustion strategies and internal combustion engine conditions. The experiments covered a range of conditions: T = 935-1117 K, P = 4.7-19.6 atm, and ? = 0.3-0.4. The experimental data are compared to previous high temperature studies and chemical modeling. A new mechanism for methyl butanoate and ethyl propanoate ignition is presented. The modeling and experimental data are in excellent agreement for methyl butanaote and yield good agreement for ethyl propanoate.  相似文献   

17.
Biodiesel is a promising alternative fuel for compression ignition (CI) engines. It is a renewable energy source that can be used in these engines without significant alteration in design. The detailed chemical kinetics of biodiesel is however highly complex. In the present study, a skeletal mechanism with 123 species and 394 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decanoate and n-heptane was developed for simulations of 3-D turbulent spray combustion under engine-like conditions. The reduction was based on an improved directed relation graph (DRG) method that is particularly suitable for mechanisms with many isomers, followed by isomer lumping and DRG-aided sensitivity analysis (DRGASA). The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K. The wide parameter range ensures the applicability of the skeletal mechanism under engine-like conditions. As such the skeletal mechanism is applicable for ignition at both low and high temperatures. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a significant reduction in size while still retaining good accuracy and comprehensiveness. The validations of ignition delay time, flame lift-off length and important species profiles were also performed in 3-D engine simulations and compared with the experimental data from Sandia National Laboratories under CI engine conditions.  相似文献   

18.
An automated procedure has been previously developed to generate simplified skeletal reaction mechanisms for the combustion of n-heptane/air mixtures at equivalence ratios between 0.5 and 2.0 and different pressures. The algorithm is based on a Computational Singular Perturbation (CSP)-generated database of importance indices computed from homogeneous n-heptane/air ignition solutions. In this paper, we examine the accuracy of these simplified mechanisms when they are used for modeling laminar n-heptane/air premixed flames. The objective is to evaluate the accuracy of the simplified models when transport processes lead to local mixture compositions that are not necessarily part of the comprehensive homogeneous ignition databases. The detailed mechanism was developed by Curran et al. and involves 560 species and 2538 reactions. The smallest skeletal mechanism considered consists of 66 species and 326 reactions. We show that these skeletal mechanisms yield good agreement with the detailed model for premixed n-heptane flames, over a wide range of equivalence ratios and pressures, for global flame properties. They also exhibit good accuracy in predicting certain elements of internal flame structure, especially the profiles of temperature and major chemical species. On the other hand, we find larger errors in the concentrations of many minor/radical species, particularly in the region where low-temperature chemistry plays a significant role. We also observe that the low-temperature chemistry of n-heptane can play an important role at very lean or very rich mixtures, reaching these limits first at high pressure. This has implications to numerical simulations of non-premixed flames where these lean and rich regions occur naturally.  相似文献   

19.
Cyclic and aromatic hydrocarbons are important components of usual commercial fuels, with C6-rings being among the most abundant cyclic structures. The combustion chemistry of C6-rings involves different levels of unsaturation, either as initial fuels (aromatics, naphtenes, …) or as intermediates formed during their combustion. In this work the ignition delays of cyclohexane, cyclohexene, 1,3-cyclohexadiene and 1,4-cyclohexadiene are systematically studied using experiments and kinetic modeling. Shock tube experiments were performed at high-temperature (above 1200 K) and for mean pressures of 6 atm. A detailed chemical kinetic model was developed that includes the combustion chemistry of the four cyclo-C6 fuels. Electronic structure calculations were performed at the CCSD(T)/CBS//B2PLYP-D3 level of theory on the pericyclic reactions of the unsaturated fuels. Pressure-dependent rate coefficients were computed by solving the master equation, and included in the mechanism. The model was validated against the new ignition data and against data of the literature. It was able to reproduce the experimental ranking of reactivity: cyclohexene > 14-CHD > cyclohexane > benzene ≈13-CHD. Kinetic analyses were performed to explain this difference of reactivity. It is shown that pericyclic reactions play a major role in the initial decomposition of the unsaturated fuels.  相似文献   

20.
Ignition delay times and OH concentration time-histories were measured in DME/O2/Ar mixtures behind reflected shock waves. Initial reflected shock conditions covered temperatures (T5) from 1175 to 1900 K, pressures (P5) from 1.6 to 6.6 bar, and equivalence ratios (?) from 0.5 to 3.0. Ignition delay times were measured by collecting OH emission near 307 nm, while OH time-histories were measured using laser absorption of the R1(5) line of the A-X(0,0) transition at 306.7 nm. The ignition delay times extended the available experimental database of DME to a greater range of equivalence ratios and pressures. Measured ignition delay times were compared to simulations based on DME oxidation mechanisms by Fischer et al. [7] and Zhao et al. [9]. Both mechanisms predict the magnitude of ignition delay times well. OH time-histories were also compared to simulations based on both mechanisms. Despite predicting ignition delay times well, neither mechanism agrees with the measured OH time-histories. OH Sensitivity analysis was applied and the reactions DME ↔ CH3O + CH3 and H + O2 ↔ OH + O were found to be most important. Previous measurements of DME ↔ CH3O + CH3 are not available above 1220 K, so the rate was directly measured in this work using the OH diagnostic. The rate expression k[1/s] =  1.61 × 1079T−18.4 exp(−58600/T), valid at pressures near 1.5 bar, was inferred based on previous pyrolysis measurements and the current study. This rate accurately describes a broad range of experimental work at temperatures from 680 to 1750 K, but is most accurate near the temperature range of the study, 1350-1750 K. When this rate is used in both the Fischer et al. and Zhao et al. mechanisms, agreement between measured OH and the model predictions is significantly improved at all temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号