首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of velocity gradient on the propagation speed of tribrachial flame edge has been investigated experimentally in laminar coflow jets for propane fuel. It was observed that the propagation speed of tribrachial flame showed appreciable deviations at various jet velocities in high mixture fraction gradient regime. From the similarity solutions, it was demonstrated that the velocity gradient varied significantly during the flame propagation. To examine the effect of velocity gradient, detail structures of tribrachial flames were investigated from OH LIF images and Abel transformed images of flame luminosity. It was revealed that the tribrachial point was located on the slanted surface of the premixed wing, and this slanted angle was correlated with the velocity gradient along the stoichiometric contour. The temperature field was visualized qualitatively by the Rayleigh scattering image. The propagation speed of tribrachial flame was corrected by considering the direction of flame propagation with the slanted angle and effective heat conduction to upstream. The corrected propagation speed of tribrachial flame was correlated well. Thus, the mixture fraction gradient together with the velocity gradient affected the propagation speed.  相似文献   

2.
This study investigates the characteristics of oscillating lifted flames in laminar coflow-jets experimentally and numerically by varying both fuel density (by varying propane and n-butane mixtures) and coflow density (by diluting air with N2/He mixtures). Two different lifted flame oscillation behaviors are observed depending on these parameters: oscillating tribrachial lifted flame (OTLF) and oscillating mode-change lifted flame (OMLF), where a rapid increase in flame radius is observed. The regimes of the two flames are identified from experiments, which shows that OMLF occurs only when the effect of the negative buoyancy on the flow field by the fuel heavier than air becomes significant at low fuel jet velocity. OMLFs are also identified to distinguish OTLF regime from flame extinction, which implies that an OMLF can be extinguished when the positive buoyancy becomes weak, losing its stabilizing effect, or when the negative buoyancy becomes strong, further enhancing its destabilizing effect. Transient numerical simulations of both OTLF and OMLF reveal that the OMLF occurs by a strong toroidal vortex and a subsequent counterflow-like structure induced by relatively-strong negative buoyancy. Such a drastic flow redirection significantly changes the fuel concentration gradient such that the OMLF changes its mode from a tribrachial flame mode (decreasing edge speed with fuel concentration gradient) to the premixed flame-like transition mode when the fuel concentration gradient becomes very small (increasing edge speed with fuel concentration gradient). Again, a tribrachial flame mode is recovered during a rising period of flame edge and repeats an oscillation cycle.  相似文献   

3.
The effects of electric fields on the reattachment of lifted flames have been investigated experimentally in laminar coflow jets with propane fuel by applying high voltages to the fuel nozzle. In case of AC, the frequency has also been varied. Results showed that reattachment occurred at higher jet velocity when applying the AC voltages, thus the stabilization limit of attached flames was extended by the AC electric field. Higher voltage and lower frequency of the AC were found to be more effective. On the contrary, the effect of DC was found to be minimal. To understand the early onset of the reattachment with the AC, occurring at higher jet velocity, the influence of AC electric fields on the propagation speed of tribrachial flame edge was investigated during the transient reattachment processes. The propagation speed increased reasonably linearly with the applied AC voltage and decreased inversely to the distance between the flame edge and the nozzle electrode. Consequently, the enhancement in the propagation speed of tribrachial flame edge was correlated well with the electric field intensity, defined as the applied AC voltage divided by the distance.  相似文献   

4.
5.
The stabilization mechanism of lifted flames in the near field of coflow jets has been investigated experimentally and numerically for methane fuel diluted with nitrogen. The lifted flames were observed only in the near field of coflow jets until blowout occurred in the normal gravity condition. To elucidate the stabilization mechanism for the stationary lifted flames of methane having the Schmidt number smaller than unity, the behavior of the flame in the buoyancy-free condition, and unsteady propagation characteristics after ignition were investigated numerically at various conditions of jet velocity. It has been found that buoyancy plays an important role for flame stabilization of lifted flames under normal gravity, such that the flame becomes attached to the nozzle in microgravity. The stabilization mechanism is found to be due to the variation of the propagation speed of the lifted flame edge with axial distance from the nozzle in the near field of the coflow as compared to the local flow velocity variation at the edge.  相似文献   

6.
Characteristics of laminar lifted flames of propane highly diluted with nitrogen have been investigated by varying the initial temperature in coflow jets. The result showed that the lifted flame maintained the tribrachial structure up to the initial temperature of 900 K and the liftoff height decreased with initial temperature and dilution ratio. The overall behavior of liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, emphasizing the importance of the stoichiometric laminar burning velocity on the propagation speed of tribrachial flame. The exponent of the liftoff height with jet velocity in the relation of increased with initial fuel mole fraction, which has been attributed to the differential diffusion between propane and diluent nitrogen. Consequently, nitrogen concentration varied along the stoichiometric contour, which affected the propagation speed. Also, the exponent increased with initial temperature due to the sensitiveness of the propagation speed variation with nitrogen dilution on initial temperature. The liftoff conditions have been observed for the jet velocity even smaller than the stoichiometric laminar burning velocity at relatively low initial temperatures. This can be attributed to the effect of the buoyancy. Liftoff velocities accounting for the relative buoyancy effect were found to have a satisfactory correlation with regardless of initial temperatures and nitrogen dilution.  相似文献   

7.
8.
Pilot-ignited dual fuel combustion involves a complex transition between the pilot fuel autoignition and the premixed-like phase of combustion, which is challenging for experimental measurement and numerical modelling, and not sufficiently explored. To further understand the fundamentals of the dual fuel ignition processes, the transient ignition and subsequent flame development in a turbulent dimethyl ether (DME)/methane-air mixing layer under diesel engine-relevant conditions are studied by direct numerical simulations (DNS). Results indicate that combustion is initiated by a two-stage autoignition that involves both low-temperature and high-temperature chemistry. The first stage autoignition is initiated at the stoichiometric mixture, and then the ignition front propagates against the mixture fraction gradient into rich mixtures and eventually forms a diffusively-supported cool flame. The second stage ignition kernels are spatially distributed around the most reactive mixture fraction with a low scalar dissipation rate. Multiple triple flames are established and propagate along the stoichiometric mixture, which is proven to play an essential role in the flame developing process. The edge flames gradually get close to each other with their branches eventually connected. It is the leading lean premixed branch that initiates the steady propagating methane-air flame. The time required for the initiation of steady flame is substantially shorter than the autoignition delay time of the methane-air mixture under the same thermochemical condition. Temporal evolution of the displacement speed at the flame front is also investigated to clarify the propagation characteristics of the combustion waves. Cool flame and propagation of triple flames are also identified in this study, which are novel features of the pilot-ignited dual fuel combustion.  相似文献   

9.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

10.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

11.

This paper presents a numerical study of auto-ignition in simple jets of a hydrogen–nitrogen mixture issuing into a vitiated co-flowing stream. The stabilization region of these flames is complex and, depending on the flow conditions, may undergo a transition from auto-ignition to premixed flame propagation. The objective of this paper is to develop numerical indicators for identifying such behavior, first in well-known simple test cases and then in the lifted turbulent flames. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD code, FLUENT. The in-situ-adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. A simple k–ε turbulence model is used for turbulence along with a low Reynolds number model close to the solid walls of the fuel pipe.

The first indicator is based on an analysis of the species transport with respect to the budget of convection, diffusion and chemical reaction terms. This is a powerful tool for investigating aspects of turbulent combustion that would otherwise be prohibitive or impossible to examine experimentally. Reaction balanced by convection with minimal axial diffusion is taken as an indicator of auto-ignition while a diffusive–reactive balance, preceded by a convective–diffusive balanced pre-heat zone, is representative of a premixed flame. The second indicator is the relative location of the onset of creation of certain radical species such as HO2 ahead of the flame zone. The buildup of HO2 prior to the creation of H, O and OH is taken as another indicator of autoignition.

The paper first confirms the relevance of these indicators with respect to two simple test cases representing clear auto-ignition and premixed flame propagation. Three turbulent lifted flames are then investigated and the presence of auto-ignition is identified. These numerical tools are essential in providing valuable insights into the stabilization behaviour of these flames, and the demarcation between processes of auto-ignition and premixed flame propagation.  相似文献   

12.
Direct numerical simulations with a C3-chemistry model have been performed to investigate the transient behavior and internal structure of flames propagating in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in normal earth gravity (1g) and zero gravity (0g). The fuel issued from a 3-mm-i.d. tube into quasi-quiescent air for a fixed mixing time of 0.3 s before it was ignited along the centerline where the fuel–air mixture was at stoichiometry. The edge of the flame formed a vigorously burning peak reactivity spot, i.e., reaction kernel, and propagated through a flammable mixture layer, leaving behind a trailing diffusion flame. The reaction kernel broadened laterally across the flammable mixture layer and possessed characteristics of premixed flames in the direction of propagation and unique flame structure in the transverse direction. The reaction kernel grew wings on both fuel and air sides to form a triple-flame-like structure, particularly for ethylene and acetylene, whereas for alkanes, the fuel-rich wing tended to merge with the main diffusion flame zone, particularly methane. The topology of edge diffusion flames depend on the properties of fuels, particularly the rich flammability limit, and the mechanistic oxidation pathways. The transit velocity of edge diffusion flames, determined from a time series of calculated temperature field, equaled to the measured laminar flame speed of the stoichiometric fuel–air mixtures, available in the literature, independent of the gravity level.  相似文献   

13.
Stabilization of laminar lifted coflow jet flames of nitrogen-diluted methane was investigated experimentally and numerically. As the fuel jet velocity was increased, two distinct behaviors in liftoff height were observed depending on the initial fuel mole fraction; a monotonically increasing trend and a decreasing and then increasing trend (U-shaped behavior). The former was observed in the jet-developing region and the latter in the jet-developed region. Because the decreasing behavior of liftoff height with jet velocity has not been observed at ambient temperature, the present study focuses on decreasing liftoff height behavior. To elucidate the physical mechanism underlying the U-shaped behavior, numerical simulations of reacting jets were conducted by adopting a skeletal mechanism. The U-shaped behavior was related to the buoyancy. At small jet velocities, the relative importance of the buoyancy over convection was strong and the flow field was accelerated in the downstream region to stabilize the lifted flame. As the jet velocity increased, the relative importance of buoyancy decreased and the liftoff height decreased. As the jet velocity further increased, the flame stabilization was controlled by jet momentum and the liftoff height increased.  相似文献   

14.
The concentration gradient and uniform mean velocity of a triple flame in a mixing layer were studied using a multi-slot burner, which can stabilize the lift-off flame especially at a very small concentration gradient. Flame stabilization conditions were examined, and the lift-off heights of the triple flame were measured for methane and propane flames. A hot-wire anemometer was used to measure the velocity distributions. Mass spectroscopy (for methane) and Rayleigh scattering (for propane) were used to measure the concentration gradients. OH radical distribution was measured by laser-induced fluorescence (LIF), and in-stream velocity variation was measured with particle-image velocimetry (PIV). Maximum in-stream temperatures were measured using the coherent anti-Stokes Raman scattering (CARS) technique. Lift-off heights of triple flames have minimum values during the increase of concentration gradient, and the propagation velocity of triple flames reaches its maximum at a critical concentration gradient. This is caused by three factors: velocity distribution upstream, flammable limit of premixed gas, and reaction of diffusion flame. The critical concentration gradient, which maximizes the propagation velocity is suggested as a new criterion of transition from a premixed flame to a triple flame.  相似文献   

15.
Autoignition-assisted nonpremixed cool flames of diethyl ether (DEE) are investigated in both laminar counterflow and turbulent jet flame configurations. First, the ignition and extinction limits of laminar nonpremixed cool flames of diluted DEE are measured and simulated using detailed kinetic models. The laminar flame measurements are used to validate the kinetic models and guide the turbulent flame measurements. The results show that, below a critical mixture condition, for elevated temperature and dilute mixtures, the cool flame extinction limit and the low-temperature ignition limit merge, leading to autoignition-assisted cool flame stabilization without hysteresis. Based on the findings from the laminar flame experiments, autoignition-assisted turbulent lifted cool flames are established using a Co-flow Axisymmetric Reactor-Assisted Turbulent (CARAT) burner. The lift-off heights of the turbulent cool flames are quantified using formaldehyde planar laser-induced fluorescence. Based on an analogy with autoignition-assisted lifted hot flames, a correlation is proposed such that the autoignition-assisted cool flame lift-off height scales with the product of the flow velocity and the square of the first-stage ignition delay time. Using this scaling, we demonstrate that the kinetic mechanism that most accurately predicts the laminar flame ignition and extinction limits also best predicts the turbulent cool flame lift-off height.  相似文献   

16.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

17.
We examine in this study the structure and dynamic properties of an edge flame formed in the near-wake of two initially separated shear flows, one containing fuel and the other oxidiser. A comprehensive study is carried out within the diffusive-thermal framework where the flow field, computed a-priori, is used for the determination of the combustion field. Our focus is on the effects of three controlling parameters: the Damköhler number controlling the overall flow rate, the oxidiser-to-fuel strain rate ratio of the supply streams that determines the extent of oxidiser entrainment towards the mixing zone, and the Lewis number, assumed equal for the fuel and oxidiser, that depends on the mixture composition. Response curves, representing the edge flame standoff distance as a function of Damköhler number, exhibit two distinct shapes: C-shaped and U-shaped curves characterising the response of low and high Lewis number flames, respectively. Stability considerations show that the upper solution branch of the C-shaped response curve is unstable and hence corresponds to physically unrealistic states, but due to heat conduction toward the cold plate the lower solution branch is always stable. The states forming this solution branch correspond to flame attachment, where the edge flame remains practically attached to the tip of the plate until it is blown off by the flow when the velocity exceeds a critical value. The U-shaped response, on the other hand, consists of equilibrium states that are globally stable. Thus, high Lewis number flames can be always stabilised near the splitter plate, with the edge held stationary or undergoing a back and forth motion, or lifted and stabilised downstream by the flow. Insight into the distinct stabilisation characteristics, exhibited by the different Lewis number cases, is given by examining the relationship between the local flow velocity and the edge propagation speed.  相似文献   

18.
The mixing, reaction progress, and flame front structures of partially premixed flames have been investigated in a gas turbine model combustor using different laser techniques comprising laser Doppler velocimetry for the characterization of the flow field, Raman scattering for simultaneous multi-species and temperature measurements, and planar laser-induced fluorescence of CH for the visualization of the reaction zones. Swirling CH4/air flames with Re numbers between 7500 and 60,000 have been studied to identify the influence of the turbulent flow field on the thermochemical state of the flames and the structures of the CH layers. Turbulence intensities and length scales, as well as the classification of these flames in regime diagrams of turbulent combustion, are addressed. The results indicate that the flames exhibit more characteristics of a diffusion flame (with connected flame zones) than of a uniformly premixed flame.  相似文献   

19.
A fundamental study aimed at investigating the stabilization characteristics of edge flames established in the near-wake of two merging streams, one containing fuel and the other oxidizer, is presented, with the main focus placed on the effects of the thermal interaction between the flame and the splitter plate. To this end, a diffusive-thermal model characterized by constant gas density and transport coefficients is used for conditions at which flame liftoff is likely to occur. It is assumed that the incoming streams are of equal strain rates, that the fuel and oxidizer are supplied in stoichiometric proportion, and that the mass diffusivities of the reactants are equal, such that the resulting combustion field is symmetric with respect to the centerline extending from the splitter plate. The results indicate that the plate has a negligible effect on the edge flame unless the tip of the plate intrudes into the preheat zone of the curved premixed flame segment forming the edge flame. In an overall adiabatic system, the heat conducted from the flame to the plate is completely recirculated back to the reactants via the lateral surfaces of the plate, thus supporting an excess enthalpy flame in the near-wake. The average output heat flux, defined as the total heat output through the lateral surfaces of the plate divided by the characteristic length associated with the temperature variation along the plate, is identified as an appropriate measure to characterize the heat recirculation efficiency.  相似文献   

20.
The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, “free-layer” flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane-air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane-air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号