首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cathode materials, pristine Li2MnSiO4 and carbon-coated Li2MnSiO4 (Li2MnSiO4/C), were synthesized by the sol–gel method. Power X-ray diffraction and scanning electron microscopy analyses show that the presence of carbon during synthesis can weaken the formation of impurities in the final product and decrease the particle size of the final product. The effects of carbon coating on electrochemical characteristics were investigated by galvanostatic cycling test and electrochemical impedance spectroscopy. The galvanostatic cycling test results indicate that Li2MnSiO4/C cathode exhibits better electrochemical performance with an initial discharge capacity of 134.4 mAh g−1 and a capacity retention of 63.9 mAh g−1 after 20 cycles. Electrochemical impedance analyses confirm that carbon coating can increase electronic conductivity, which results in good electrochemical performance of Li2MnSiO4/C cathode. The two semicircles and the large arc obtained in this study can be attributed to the migration of lithium ions through the solid electrolyte interphase films, the electronic properties of the material, and the charge transfer step, respectively.  相似文献   

2.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

3.
Variable chain length di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks were prepared by application of a sol-gel strategy. These materials, designated as di-urethanesils (represented as d-Ut(Y′), where Y′ indicates the average molecular weight of the polymer segment), were doped with lithium triflate (LiCF3SO3). The two host hybrid matrices used, d-Ut(300) and d-Ut(600), incorporate POE chains with approximately 6 and 13 (OCH2CH2) repeat units, respectively. All the samples studied, with compositions ∞ > n ≥ 1 (where n is the molar ratio of (OCH2CH2) repeat units per Li+), are entirely amorphous. The di-urethanesils are thermally stable up to at least 200 °C. At room temperature the conductivity maxima of the d-Ut(300)- and d-Ut(600)-based di-urethanesil families are located at n = 1 (approximately 2.0 × 10−6 and 7.4 × 10−5 Scm−1, respectively). At about 100 °C, both these samples also exhibit the highest conductivity of the two electrolyte systems (approximately 1.6 × 10−4 and 1.0 × 10−3 Scm−1, respectively). The d-Ut(600)-based xerogel with n = 1 displays excellent redox stability.  相似文献   

4.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

5.
A new member of the family of garnets with fast lithium ion conduction has been found with the composition Li7La3Hf2O12. The anion arrangement corresponds to the oxygen framework in garnets, e.g., in Ca3Fe2Si3O12. Hafnium is coordinated octahedrally while the lanthanum environment can be described as a distorted cube. Lithium occupies a large number of positions with tetrahedral, trigonal planar, and metaprismatic coordination. Li7La3Hf2O12 shows a lithium bulk ion conductivity of 2.4 × 10−4 Ω−1 cm−1 at room temperature with an activation energy of 0.29 eV.  相似文献   

6.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

7.
Several olivine phosphates were investigated in the last years as cathode materials for secondary lithium ion batteries. Among these compounds, LiFe x Co1 − x PO4 solid solutions might be interesting candidates because they should combine the high potential value of Co3+/Co2+ (higher than 4.5 V vs Li+/Li) with the relatively high charge–discharge rate of LiFePO4. Solid solutions were prepared by solid-state route and characterised by X-ray powder diffraction, cyclic voltammetry, impedance spectroscopy and the Hebb–Wagner method. The results show that also low amount of iron induces high electronic conductivity in the solid solutions.  相似文献   

8.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

9.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

10.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

11.
Solid polymer electrolytes (SPE) based on poly-(vinyl alcohol) (PVA)0.7 and sodium iodide (NaI)0.3 complexed with sulfuric acid (SA) at different concentrations were prepared using solution casting technique. The structural properties of these electrolyte films were examined by X-ray diffraction (XRD) studies. The XRD data revealed that sulfuric acid disrupt the semi-crystalline nature of (PVA)0.7(NaI)0.3 and convert it into an amorphous phase. The proton conductivity and impedance of the electrolyte were studied with changing sulfuric acid concentration from 0 to 5.1 mol/liter (M). The highest conductivity of (PVA)0.7(NaI)0.3 matrix at room temperature was 10−5 S cm−1 and this increased to 10−3 S cm−1 with doping by 5.1 M sulfuric acid. The electrical conductivity (σ) and dielectric permittivity (ε′) of the solid polymer electrolyte in frequency range (500 Hz–1 MHz) and temperature range (300–400) K were carried out. The electrolyte with the highest electrical conductivity was used in the fabrication of a sodium battery with the configuration Na/SPE/MnO2. The fabricated cells give open circuit voltage of 3.34 V and have an internal resistance of 4.5 kΩ.  相似文献   

12.
A simple and sensitive chemiluminescence (CL) method coupled with flow-injection technique is proposed to determine naproxen (NAP). The method is based upon the enhancement of the weak CL signal arising from the reaction of Ce(IV) and Na2S2O4 with Eu3+ to form the Eu3+-Ce(IV)-Na2S2O4 system. The CL intensity was significantly increased by the introduction of NAP into this system in the presence of silver nanoparticles (Ag NPs). Examination of the recorded UV–vis spectra and fluorescence spectra indicated that the energy of the intermediate SO2*, which originated from the redox reaction of Ce(IV) and Na2S2O4, was transferred to Eu3+ via NAP and that the process was accelerated by Ag NPs due to their catalytic activity. Under the optimum conditions, the CL intensity was increased with increasing NAP concentration and the correlation was linear (r = 0.9992) over the NAP concentration range of 1–420 ng mL−1. The limit of detection (LOD) was 0.11 ng mL−1 with a relative standard deviation (RSD) of 1.15% for 5 replicate determinations of 200 ng mL−1 NAP. The method was successfully applied to determine NAP in pharmaceutical and biological samples.  相似文献   

13.
The manganese oxide/multi-walled carbon nanotube (MnO2/MWNT) composite and the manganese oxide/acetylene black (MnO2/AB) composite were prepared by translating potassium permanganate into MnO2 which formed the above composite with residual carbon material using the redox deposition method and carbon as a reducer. The products were characterized by X-ray diffraction, Fourier transform infrared, and scanning electron microscope. Electrochemical properties of both the MnO2/MWNT and MnO2/AB electrodes were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the MnO2/MWNT electrode has better electrochemical capacitance performance than the MnO2/AB electrode. The charge–discharge test showed the specific capacitance of 182.3 F·g−1 for the MnO2/MWNT electrode, and the specific capacitance of 127.2 F·g−1 for the MnO2/AB electrode had obtained, within potential range of 0–1 V at a charge/discharge current density of 200 mA·g−1 in 0.5 mol·L−1 potassium sulfate electrolyte solution in the first cycle. The specific capacitance of both the MnO2/MWNT and MnO2/AB electrodes were 141.2 F·g−1 and 78.5 F·g−1 after 1,200 cycles, respectively. The MnO2/MWNT electrode has better cycling performance. The effect of different morphologies was investigated for both MnO2/MWNT and MnO2/AB composites.  相似文献   

14.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

15.
The synthesis and functionalization of carbon nanoparticles with PEG200 and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ 1 = 2.71 ns; τ 2 = 7.36 ns; τ 3 = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK a of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M−1).  相似文献   

16.
Polycrystalline Li2WO4 was sintered at temperatures, 400, 450, 500, 550, 600, 650, and 700 °C. After sintering at each particular temperature, the Li2WO4 was cooled to room temperature. The X-ray diffraction pattern of Li2WO4 exhibits dominant peaks attributable to 7Li2WO4.4H2O (cubic) and Li2WO4 (hexagonal) and thus reveals the extent of hydration of the material. The composition varies on heating at several temperatures as shown by the presence of new peaks in the diffractogram. Thermogravimetric analysis is used to correlate respective structural and thermal properties in variation. The impedance spectra show the presence of a semicircle in the higher frequency regions and straight line behaviors at lower frequencies. SEM micrographs depict the image of sintered Li2WO4. Grain growth studies reveal the sensitiveness of grain toward temperature. The maximum grain size is observed to be ≈5.7 μm at 700 °C.  相似文献   

17.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

18.
The preparation of (La9.33−2x/3Sr x 0.67−x/3)Si6O24O2 (0 ≤ x ≤ 2) samples with different amounts of cation vacancies is reported. Structure and unit-cell parameters were deduced by Rietveld analysis of XRD patterns. Structural features that enhance oxygen conductivity in Sr-doped apatites are discussed. Up to three components were detected in 29Si MAS-NMR spectra which change with the amount and distribution of cation vacancies. In general, oxygen conductivity increases with the amount of vacancies at La1 (6h) sites, passing through a maximum for x = 0.4. In the case of activation energy, a minimum is detected near x = 1.2, indicating that entropic and enthalpic change in different ways. The presence of cation vacancies should enhance oxygen hopping along c-axis; however, the analysis of the frequency dependence of conductivity suggests that oxygen motions are produced along three axes.  相似文献   

19.
We report for the first time the use of lithiated crystalline V2O5 thin films as positive electrode in all-solid-state microbatteries. Crystalline LixV2O5 films (x ≈ 0.8 and 1.5) are obtained by vacuum evaporation of metallic lithium deposited on sputtered c-V2O5. An all-solid-state lithium microbattery of Li1.5V2O5/LiPON/Li exhibited a typical reversible capacity of 50 μAh/cm2 in the potential range 3.8/2.15 V which exceeds by far the results known on all-solid-state lithium batteries using amorphous V2O5 films and lithiated amorphous LixV2O5 thin films as positive electrode. Hence, the present work opens the possibility of using high performance crystalline lithiated V2O5 thin films in rocking-chair solid-state microbatteries.  相似文献   

20.
The specific features of the crystal structure and the magnetic state of stoichiometric lithium manganite in the structurally ordered Li[Mn2]O4 and disordered Li1 − δMnδ[Mn2 − δLiδ]O4 (δ = 1/6) states have been investigated using neutron diffraction, X-ray diffraction, and magnetic methods. The structurally disordered state of the manganite was achieved under irradiation by fast neutrons (E eff ≥ 1 MeV) with a fluence of 2 × 1020 cm−2 at a temperature of 340 K. It has been demonstrated that, in the initial sample, the charge ordering of manganese ions of different valences arises at room temperature, which is accompanied by orthorhombic distortions of the cubic spinel structure, and the long-range antiferromagnetic order with the wave vector k = 2π/c(0, 0, 0.44) is observed at low temperatures. It has been established that the structural disordering leads to radical changes in the structural and magnetic states of the LiMn2O4 manganite. The charge ordering is destroyed, and the structure retains the cubic symmetry even at a temperature of 5 K. The antiferromagnetic type of ordering transforms into ferrimagnetic ordering with local spin deviations in the octahedral sublattice due to the appearance of intersublattice exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号