首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

2.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

3.
We investigate the TEA CO2 laser ablation of films of poly(methyl methacrylate), PMMA, with average MW 2.5, 120 and 996 kDa doped with photosensitive compounds iodo-naphthalene (NapI) and iodo-phenanthrene (PhenI) by examining the induced morphological and physicochemical modifications. The films casted on CaF2 substrates were irradiated with a pulsed CO2 laser (10P(20) line at 10.59 μm) in resonance with vibrational modes of PMMA and of the dopants at fluences up to 6 J/cm2. Laser induced fluorescence probing of photoproducts in a pump and probe configuration is carried out at 266 nm. Formation of naphthalene (NapH) and phenanthrene (PhenH) is observed in NapI and PhenI doped PMMA, respectively, with relatively higher yields in high MW polymer, in similarity with results obtained previously upon irradiation in the UV at 248 nm. Above threshold, formation of photoproducts is nearly complete after 200 ms. As established via optical microscopy, bubbles are formed in the irradiated areas with sizes that depend on polymer MW and filaments are observed to be ejected out of the irradiated volume in the samples made with high MW polymer. The implications of these results for the mechanisms of polymer IR laser ablation are discussed and compared with UV range studies.  相似文献   

4.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

5.
Amide-based polymer liquids are important for developing biological and optical colloids or nanofluids. Functionalized properties arise from specific molecular structures. In this investigation, we report model molecular configurations of a polymer liquid, 0.3 g/L poly(vinylidene fluoride) (PVF2) dissolved in liquid N,N-dimethylformamide (DMF), based on the characteristic IR vibration bands. Peculiarly, a ferroelectric β-PVF2 phase reorders on a linear configuration in support with the DMF molecules, showing a characteristic band 840 cm− 1 (CH2 rocking and CF2 asymmetric stretching) with the trans band at 1275 cm− 1. Four CO stretching bands ν10, ν11, ν12, and ν13 of 1650, 1675, 1725, and 1760 cm− 1 (bandwidth Δν½ = 180 cm− 1 in the four bands) arise in four major configurations of DMF-PVF2 pairs (or derivatives). Only one prominent ν10 band 1660 cm− 1 (Δν½ = 75 cm− 1) incurs with a shoulder ν11 of 1725 cm− 1 (Δν½ = 25 cm− 1) in two DMF configurations. A ferroelectric field cased in presence of β-PVF2 leads to enhance IR absorption by as much as an order of magnitude. It leads to converging non-bonding electron density on the amide moiety.  相似文献   

6.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

7.
The jet-cooled spectrum of pentafluoroethane (C2HF5) has been recorded between 1100 and 1325 cm−1 at a resolution of 0.0022 cm−1. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C2HF5 in 500 Torr of helium. Transitions belonging to five different fundamental vibrations have been assigned and fit to a Watson Hamiltonian: the ν3 band at 1309.880494(189) cm−1, ν4 at 1200.734645(67) cm−1, ν5 at 1142.78147(33) cm−1, ν13 at 1223.334098(115) cm−1, and ν14 at 1147.394185(163) cm−1. The fit of the ν4 band has an rms deviation of 0.000436 cm−1 compared to the uncertainty in the experimental line position of 0.0002 cm−1. Satisfactory fits were achieved for the other four bands (ν3, ν5, ν13, ν14) at this cold temperature, with most of the centrifugal distortion constants fixed at the ground state values. Joint fits with previous work were attempted for the ν4 and ν13, successfully in the former case and unsuccessfully in the latter.  相似文献   

8.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

9.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

10.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

11.
This paper reports the growth and spectroscopic characterization of Er3+:Sr3Y(BO3)3 crystal. Er3+:Sr3Y(BO3)3 crystal with dimensions up to ∅20×35 mm3 has been grown by Czochralski method. The polarized spectroscopic properties of Er3+:Sr3Y(BO3)3 crystal were investigated. Based on the Judd-Ofelt theory, the effective intensity parameters Ωt were obtained: Ω2=1.71×10−20 cm2, Ω4=1.39×10−20 cm2, Ω6=0.74×10−20 cm2 for π-polarization, and Ω2=1.77×10−20 cm2, Ω4=1.44×10−20 cm2, Ω6=0.65×10−20 cm2 for σ-polarization. The emission cross-section σem was calculated to be 4.75×10−21 cm2 for π-polarization at 1536 nm and 6.30×10−21 cm2 for σ-polarization at 1537 nm. The investigated results showed that Er3+:Sr3Y(BO3)3 crystal may be regarded as a potential laser host material for 1.55 μm IR solid-state lasers.  相似文献   

12.
Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3-μm spectral region (700-1190 cm−1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm−1 allowing the extensive study of the set of resonating states {101, 81, 71, 41, 61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has lead to the determination of more accurate spectroscopic constants, including interaction constants, than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm−1, ν0(ν8) = 932.19572(15) cm−1, ν0(ν7) = 937.44452(10) cm−1, ν0(ν4) = 1025.6976(14) cm−1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed in an earlier heterodyne spectroscopic study.  相似文献   

13.
Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL∼40-100 fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50 nm for Al and 100 nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=60{65} mJ/cm2and spallation Fs=120{190} mJ/cm2, where numbers in brackets { } show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×109 1/s at spallation threshold. Simulated spall strength of Al is 7.4{8.7} GPa, that is noticeably less than 10.3{14} GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120 mJ/cm2 and crater depth of 110 nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.  相似文献   

14.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

15.
The long wavelength end of the electronic spectrum of CuCl2, between 636 and 660 nm, has been recorded in the gas phase by laser-excitation spectroscopy using a sample prepared at low temperatures (ca. 10 K) in a free-jet expansion. Under these conditions, it is possible to resolve vibrational, rotational, and even Cu hyperfine structure. The (0, 0) band of the E2Πu-X2Πg transition has been identified with an origin at 15546.286(3) cm−1 for 63Cu35Cl2. The observation and analysis of bands involving vibrationally excited levels has allowed the determination of all three vibrational intervals for the E2Πu state (ν1 = 335.88 cm−1, ν2 = 112.42 cm−1, and ν3 = 482.17 cm−1, 63Cu35Cl2). In addition, two other, unrelated transitions have been identified in the same narrow wavelength region. This, combined with the observation of local perturbations of the rotational structure in various bands, reveals the presence of other closely lying electronic states in the same energy region.  相似文献   

16.
The ESR spectrum of Mn2+ doped potassium hydrogen sulphate at liquid nitrogen temperature (77 K) has been analyzed and site of entered Mn2+ in the lattice has been discussed. The values of the zero field parameters that give good fit to the observed ESR spectra have been obtained. The obtained g, A, B, D, E and a values are 2.0002, 66×10−4 cm−1, 26×10−4 cm−1, 59×10−4 cm−1, 32×10−4 cm−1 and −8×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond has also been estimated. From the optical absorption study at room temperature, the distortion has been suggested. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion and crystal field parameters B, C, Dq and α providing good fit to the observed optical spectra have been evaluated and the values obtained for the parameters are B=627 cm−1, C=2580 cm−1 , Dq=790 cm−1 and α=76 cm−1.  相似文献   

17.
The mechanisms of laser ablation of CdS targets at different laser wavelengths have been investigated. (CdS)n+ cluster formation is only observed upon 532 nm ablation. The time and energy distributions of neutral S, S2, Cd and CdS show significant dependence on laser wavelength. Bimodal distributions are observed at 266 and 308 nm. For the former, the average kinetic energy increases significantly with mass, taking values in the range of 0.3-1.7 eV. At 308 nm the slow component of the time distribution disappears at distances above the target larger than 1 cm. At this wavelength, the observed time distribution appears to reflect mainly the dynamics of the expansion. At 532 nm the time distribution is monomodal and the average kinetic energies are below 0.2 eV. Clear indications of the participation of thermal (at 532 nm) and non-thermal mechanisms (at 266 nm) have been found. It is tentatively concluded that the cluster formation observed upon ablation at 532 nm can be related to the thermal ablation mechanisms in which the low kinetic energy of the species in the plume and their similar velocities favor the aggregation processes.  相似文献   

18.
In a three-components fluorophosphate glass system, the introduction of H3BO3 brings some valuable influence to the spectroscopic and thermal properties of the glasses. With H3BO3 increases from 2 to 20 mol%, Ω6, Sed4I13/2, FWHM, Tg and fluorescence lifetime change from 3.21×10−20 cm2, 1.77×10−20 cm2, 45 nm, 480 °C and 8.8 ms to 4.66×10−20 cm2, 2.11×10−20 cm2, 50 nm, 541 °C and 7.4 ms, respectively. σabs, σemi, FWHM×τf×σemi has a maximum when H3BO3 is 11 mol%. Tg and TxTg increases with H3BO3 introduction. Results showed that in fluorophosphate glasses, proper amount of B2O3 can be used as a modifier to suppress upconversion and improve spectroscopic properties, broadband property and crystallization stability of the glasses while keeps the fluorescence lifetime relatively high.  相似文献   

19.
The electron paramagnetic resonance (EPR) study of the Cr3+-doped ammonium oxalate monohydrate (AOM) single crystal is done at room temperature. Two magnetically inequivalent sites for chromium are observed. The hyperfine structure for Cr53 isotope is also obtained. The spin Hamiltonian parameters are evaluated as: D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9820±0.0002, A=(161±2)×10−4 cm−1 for site I and D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9791±0.0002, A=(160±2)×10−4 cm−1 for site II, respectively. On the basis of EPR data the site symmetry of Cr3+ doped single crystal is discussed. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The values of different parameters are B=803, C=3531, Dq=2208 cm−1, h=0.59 and k=0.21, where B and C are Racah parameters, Dq is crystal field parameter and h and k are nephelauxetic parameters, respectively.  相似文献   

20.
Raman spectra of bismuth ferrite (BiFeO3) over the frequency range of 100-1500 cm−1 have been systematically investigated with different excitation wavelengths. The intensities of the two-phonon modes are enhanced obviously under the excitation of 532 nm wavelength. This is attributed to the resonant behavior when incident laser energy closes to the intrinsic bandgap of BiFeO3. The Raman spectra of BiFeO3 excited at 532 nm were measured over the temperature range from 77 to 678 K. Besides the abnormal changes of the peak position and the linewidth of the A1 mode at 139 cm−1, the prominent frequency shift, the line broadening and the decrease of the intensity for the two-phonon mode at 1250 cm−1 were observed as the temperature increased to Néel temperature (TN). All these results indicate the existence of strong spin-phonon coupling in BiFeO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号