首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO films are hydrothermally grown on ZnO-buffered c-plane sapphire substrates at a low temperature of 70 °C. A radio-frequency (RF) reactive magnetron sputtering has been used to grow the ZnO buffer layers. X-ray diffraction, scanning electron microscopy, and room temperature photoluminescence are carried out to characterize the structure, morphology and optical property of the films. It is found that the films are stress-free. The epitaxial relationship between the ZnO film and the c-plane sapphire substrate is found to be ZnO (0 0 0 1)||Al2O3 (0 0 0 1) in the surface normal and in plane. Sapphire treatment, as such acid etching, nitridation, and oxidation are found to influence the nucleation of the film growth, and the buffer layers determine the crystalline quality of the ZnO films. The maximum PL quantum efficiency of ZnO films grown with hydrothermal method is found to be about 80% of single-crystal ZnO.  相似文献   

2.
High quality epitaxial ZnO films were grown on c-Al2O3 substrates with Cr2O3 buffer layer by plasma-assisted molecular beam epitaxy (P-MBE). The hexagonal crystalline Cr2O3 layer was formed by oxidation of the Cr-metal layer deposited on the c-Al2O3 substrate using oxygen plasma. The epitaxial relationship was determined to be ZnO//Cr2O3//Cr//Al2O3 and ZnO//Cr2O3//[0 0 1]Cr//Al2O3. The Cr2O3 buffer layer was very effective in improving the surface morphology and crystal quality of the ZnO films. The photoluminescence spectrum showed the strong near band-edge emissions with the weak deep-level emission, which implies high optical quality of the ZnO films grown on the Cr2O3 buffer.  相似文献   

3.
ZnO thin films were prepared by reactive RF magnetron sputtering at various deposition temperatures. They were annealed in oxygen ambient at various annealing temperatures. The microstructures and photoluminescence characteristics of ZnO films were investigated. The grain size of the ZnO thin film that was deposited at room temperature (RT) after annealing exceeded that of the film that was deposited at . Excess Zn atoms were considered to be present in the ZnO film that was deposited at RT, so the film was non-stoichiometric ZnO. No visible emission of either of the ZnO films deposited at the two temperatures was observed before annealing. Following annealing at high temperature, the green emission from the ZnO film that was deposited at RT was stronger than that of the film that was deposited at . The relationship between the non-stoichiometry of the thin film and the visible emission was discussed. The luminescent centers that correspond to green emission are defects; the concentration of defects was higher in the ZnO thin film that was deposited at RT than in the film that was deposited at .  相似文献   

4.
Using transmission electron microscopy, a new nano-phase structure of Zn0.75Ox induced by Zn-vacancy has been discovered to grow on wurtzite ZnO nanobelts. The superstructure grows epitaxial from the surface of the wurtzite ZnO nanobelts and can be fitted as an orthorhombic structure, with lattice parameters a′=2a, and c′=c, where a and c are the lattice parameters of ZnO. The superstructured phase is resulted from high-density Zn vacancies orderly distributed in the ZnO matrix. This study provides direct observation about the existence of Zn-vacancies in ZnO.  相似文献   

5.
We report orientation-controllable growth of ZnO thin films and their orientation-dependent electrical characteristics. ZnO thin films were deposited on single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3 substrates using pulsed laser deposition (PLD) at different substrate temperatures (400-800 °C). It was found that the orientation of ZnO films could be controlled by using different substrates of single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3. The a-plane () and c-plane (0 0 0 2) oriented ZnO films are formed on LaAlO3 and SrTiO3, respectively. In both cases, the degree orientation increased with increasing deposition temperature Ts. Both the surface free energy and the degree of lattice mismatch are ascribed to play an important role for the orientation-controllable growth. Further characterization show that the grain size of the films with both orientations increases for a substrate temperature increase (i.e. from Ts = 400 °C to Ts = 800 °C), whereas the electrical properties of ZnO thin films depend upon their crystalline orientation, showing lower electrical resistivity values for a-plane oriented ZnO films.  相似文献   

6.
Nd2Hf2O7 (NHO) thin films have been epitaxially grown by pulsed laser deposition (PLD) on Ge(1 1 1) substrates. In situ reflection high-energy electron diffraction (RHEED) evolution of the (1 1 1)-oriented NHO during the deposition has been investigated and shows that the epilayer has a twin-free character with type-B stacking. Interfacial structure of NHO/Ge has been examined by high-resolution transmission electron microscopy (HRTEM). The results indicate a highly crystalline film with a very thin interface, and the orientation relationship between NHO and Ge can be denoted as (1 1 1)NHO//(1 1 1)Ge and . Finally, twin-free epitaxial growth of NHO with type-B orientation displays temperature dependence and the type-B epitaxy is favored at high temperature.  相似文献   

7.
Second harmonic generation (SHG) studies of fluorine-doped zinc oxide (ZnO:F) thin films deposited on soda-lime glass substrates from an aged solution in conjunction with zinc pentanedionate, using the chemical spray deposition technique were carried out. The and independent tensorial components of the quadratic nonlinear optical susceptibility of the ZnO:F thin films were evaluated. Scanning electron microscopy and X-ray diffraction investigations revealed a homogeneous distribution of nanoparticles of similar size and morphology for various samples deposited at different substrate temperatures (ranging from 400 to 525 °C). The SHG-technique revealed a clear dependence of the nonlinear optical response with the deposition temperature. Typical optical transmittance and photoluminescence (PL) studies were also performed, from which a bandgap (Eg) of 3.3 eV was evaluated in films deposited under optimal conditions of conductivity and transmittance.  相似文献   

8.
Low-resistivity n-type ZnO thin films were grown by atomic layer deposition (ALD) using diethylzinc (DEZ) and H2O as Zn and O precursors. ZnO thin films were grown on c-plane sapphire (c- Al2O3) substrates at 300 C. For undoped ZnO thin films, it was found that the intensity of ZnO () reflection peak increased and the electron concentration increased from 6.8×1018 to 1.1×1020 cm−3 with the increase of DEZ flow rate, which indicates the increase of O vacancies () and/or Zn interstitials (Zni). Ga-doping was performed under Zn-rich growth conditions using triethylgallium (TEG) as Ga precursor. The resistivity of 8.0×10−4 Ω cm was achieved at the TEG flow rate of 0.24 μmol/min.  相似文献   

9.
10.
11.
Thin films of SiOx having thickness of 0.2 μm and oxygen content x=1.5 or 1.7 are prepared by thermal evaporation of SiO in vacuum. Then some samples are furnace annealed for various times (in the range ) at 770 and 970 K and some others are rapid thermal annealed at 970 K for 30 and 60 s. Photoluminescence (PL) measurements are carried out at room temperature using the 442 nm line of a He-Cd laser and the 488 nm of an Ar laser for excitation. The effect of the annealing conditions and wavelength of the exciting light on the shape of the PL from these films is explored. The deconvolution of the PL spectra measured with the 442 nm line from samples annealed at 770 K for reveals two distinct PL bands peaked at around 2.3 and 2.5 eV, which do not shift appreciably with increasing annealing time. In addition, at longer annealing times, a weak third band is resolved centred in the range 2.0-2.1 eV. It exists in the spectra of all samples annealed at 970 K being more prominent in the samples with x=1.5. The intensity of this band shows different dependences on the annealing time in the films with different initial composition. The results obtained are discussed in terms of radiative recombination via defect states in the SiOx matrix (the 2.5 eV band) or at the a-Si-SiOx interface (the 2.3 eV band). The band centred in the 2.0-2.1 eV range is related to recombination in amorphous silicon nanoparticles grown upon annealing.  相似文献   

12.
Epitaxial scandium nitride films (225 nm thick) were grown on (1 1 1)-oriented silicon substrates by molecular beam epitaxy (MBE), using ammonia as a reactive nitrogen source. Film microstructure was investigated using X-ray diffraction (XRD). The (1 1 1) ω-scan FWHM of 0.551° obtained for films grown at 850 °C is the lowest reported so far for ScN thin films. The principal orientation of ScN with respect to Si is (1 1 1)ScN//(1 1 1)Si and []ScN//[]Si, representing a 60° in-plane rotation of the ScN layer with respect to the Si substrate. However, some twinning is also present in the films; the orientation of the twinned component is (1 1 1)ScN//(1 1 1)Si and []ScN//[]Si, representing a ‘cube-on-cube’ orientation. The volume percentage of these twins in the films decreases with increasing film growth temperature.  相似文献   

13.
Erbium fluoride (ErF3) films were thermally deposited on Ge(1 1 1), Si(0 0 1) and copper mesh grid with different substrate temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the films. The structure of ErF3 films deposited on germanium and silicon changed from amorphous to crystalline with increasing the substrate temperature, while the crystallization temperature of the films on silicon is higher than that of on germanium. The infrared optical properties of the films change greatly with the evolution of crystal structure. It is also found that the morphology of ErF3 film on Ge(1 1 1) at 200 °C is modulated by the stress between the substrate and film. The SEM and TEM results confirmed that the ErF3 films on copper mesh grid were crystalline even at 100 °C. Interestingly, the ErF3 films show flower-like surface morphology when deposited on copper mesh at 200 °C. The crystallization temperature (Tc) of ErF3 films on the three substrates has the relation which is which is induced by the wetting angle of ErF3 films on different substrates.  相似文献   

14.
Co0.8Fe2.2O4 ferrite thin films have been prepared on Si(0 0 1) substrates by the chemical solution deposition. Structural characteristics indicate all films are single phase with spinel structure and the space group and the mean grain size increases from 8 to 30 nm with the increase of annealing temperature. The magnetic properties of Co0.8Fe2.2O4 thin films are highly dependent on annealing temperature. The sample annealed at 800 °C possesses high saturation magnetization, moderate coercivity and squareness ratio, making it a promising application candidate in high-density record and magneto-optical materials.  相似文献   

15.
16.
Thermal stability of single-crystalline [ZnO]m[Zn0.7Mg0.3O]n multiple quantum wells (MQWs) grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy is reported. X-ray diffraction analysis revealed that these MQWs were grown as designed with a fixed Zn0.7Mg0.3O barrier width of and a series of ZnO well widths of . Cathodoluminescence spectra from these MQWs consisted of two major peaks; one was the emission from the bound excitons in Zn0.7Mg0.3O barrier layers, and the other was that from the confined excitons in ZnO well layers. These structural and optical properties were found to be dramatically changed by the ex situ annealing treatments over 700 °C. These changes were presumably due to the onset of phase separation of the Zn0.7Mg0.3O barrier layers with pronounced Mg diffusion toward the ZnO wells.  相似文献   

17.
18.
We have investigated cathodeluminescence (CL) of Ge implanted SiO2:Ge and GeO2:Ge films. The GeO2 films were grown by oxidation of Ge substrate at 550 °C for 3 h in O2 gas flow. The GeO2 films on Ge substrate and SiO2 films on Si substrate were implanted with Ge-negative ions. The implanted Ge atom concentrations in the films were ranging from 0.1 to 6.0 at%. To produce Ge nanoparticles the SiO2:Ge films were thermally annealed at various temperatures of 600-900 °C for 1 h in N2 gas flow. An XPS analysis has shown that the implanted Ge atoms were partly oxidized. CL was observed at wavelengths around 400 nm from the GeO2 films before and after Ge-implantation as well as from SiO2:Ge films. After Ge-implantation of about 0.5 at% the CL intensity has increased by about four times. However, the CL intensity from the GeO2:Ge films was several orders of magnitude smaller than the intensity from the 800 °C-annealed SiO2:Ge films with 0.5 at% of Ge atomic concentration. These results suggested that the luminescence was generated due to oxidation of Ge nanoparticles in the SiO2:Ge films.  相似文献   

19.
Properties of surface defect states of CdTexS1 − x quantum dots with an average diameter of 7 nm are investigated experimentally. The stoichiometric ratio is found to be for by use of the energy dispersive analysis of x-ray. The photoluminescence spectrum, the photoluminescence excitation spectrum, and the surface passivation are adopted to characterize the properties of surface defect states. The energy levels of surface defect states of CdTexS1 − x quantum dots are also determined.  相似文献   

20.
Due to a constant increase in demands for transparent electronic devices the search for alternative transparent conducting oxides (TCO) is a major field of research now. New materials should be low-cost and have comparable or better optical and electrical characteristics in comparison to ITO. The use of n-type ZnO was proposed many years ago, but until now the best n-type dopant and its optimal concentration is still under discussion. Ga was proposed as the best dopant for ZnO due to similar atomic radius of Ga3+ compared to Zn2+ and its lower reactivity with oxygen. The resistivity ρ of ZnO:Ga/Si (100) films grown by PEMOCVD was found to be 3×10−2 Ω cm. Rapid thermal annealing (RTA) was applied to increase the conductivity of ZnO:Ga (1 wt%) films and the optimal regime was determined to be 800  C in oxygen media for 35 s. The resistivity ratio before and after the annealing and the corresponding surface morphologies were investigated. The resistivity reduction () was observed after annealing at optimal regime and the final film resistivity was approximately ≈4×10−4 Ω cm, due to effective Ga dopant activation. The route mean square roughness (Rq) of the films was found to decrease with increasing annealing time and the grain size has been found to increase slightly for all annealed samples. These results allow us to prove that highly conductive ZnO films can be obtained by simple post-growth RTA in oxygen using only 1% of Ga precursor in the precursor mix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号