首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Effective work functions (φ+ and φe) for positive-ionic and electronic emissions from polycrystalline metals of Nb, Mo, Ta, W and Ir are calculated according to our theoretical model by using those published data on both fractional surface area (Fi) and local work function (φi) of each metal surface composed of several patchy faces (1, 2, …, i). Comparison between the theoretical values thus obtained and those experimental data published to date yields the conclusions as follows. (1) With a slight error of less than ∼0.1 eV, the value of φe calculated with each of the metals is in fair or good agreement with that determined by experiment. (2) Such agreement is found also with φ+ for W. (3) In a typical case of W, where the degree of monocrystallization (δm) corresponding to the largest among the values of Fi is less than ∼0.5, the thermionic contrast (Δφ* ≡ φ+ − φe) is found again to be nearly equal to both theoretical and experimental values reported previously. (4) Each of the five metals shows that Δφ* at δm = 0.68-0.95 is smaller than Δφ* at δm < 0.5. (5) This result strongly supports our theoretical prediction that Δφ* decreases gradually to zero as δm increases beyond ∼0.5 up to ∼1. (6) Particularly, such a surface which has δm ≥ 0.96 exhibits Δφ* ≈ 0, apparently equivalent to the so-called “monocrystalline surface (δm = 1)”. These results lead to the conclusion that our theoretical model is valid for evaluating the effective work functions probably with a slight error of less than ∼0.1 eV, irrespective of both the surface species and the range of δm. In addition, our simple model makes it possible to analyze the mechanism of change in φ+ and φe according to the change in surface characters of both φi and Fi.  相似文献   

2.
For better understanding the peculiarities of work function, a simple model is devised to calculate the effective work functions (?+ and ?e) for positive-ionic and electronic emissions from polycrystalline surfaces, which have a work function range from the maximum (?max) to the minimum (?min). Analysis of the theoretical results thus obtained and also of experimental data published to date enables us to find the quantitative relation between the thermionic contrast (Δ?* ≡ ?+ − ?e) and the degree of monocrystallization (δm), thereby yielding the three formulae of (1) Δ?* = c for 0 < δm ? 1/2 (polycrystal), (2) Δ?* = 4 m (1 − δm) for l/2 ? δm ? 1 (polycrystal), and (3) Δ?* = 0 for δm = 1 (monocrystal). For a given surface consisting of a number of patchy faces (i), δm corresponds to the largest among its fractional surface areas (Fi) having different values of local work function (?i). In a typical case of tungsten, the constant of c is evaluated theoretically to be 0.53 ± 0.09 eV, which well agrees with 0.59 ± 0.06 eV determined experimentally by many workers and also which satisfies the essential condition of Δ?* ≦ c < ?max − ?min ≈ 0.8-1.0 eV. Our theoretical model is quite simple, but it is very useful for (1) evaluating both ?+ and ?e with an uncertainty of less than ±0.1 eV, (2) finding the quantitative relation between Δ?* and δm for actual surfaces of both poly- and monocrystals, and also (3) getting a substantial clue as to the problem how the effective work functions are governed by the surface characteristics of both Fi and ?i.  相似文献   

3.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

4.
Thermo-optical parameters of CdSe/ZnS core-shell nanoparticles suspended in toluene were measured using a thermal lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne laser at λp = 632.8 nm was used as the probe beam and an Ar+ laser (at λe = 514.5 nm) was used as the excitation beam for studies as a function of both core size and concentration of CdSe/ZnS nanocrystals. The fraction thermal load (φ) and radiative quantum efficiencies (η) of the CdSe/ZnS were determined. Dependence on core size (∼2-5 nm) and concentration (∼0.01-0.62 mg/ml) was observed for both φ and η parameters.  相似文献   

5.
High-pressure resistivity and X-ray diffraction measurements were conducted on La0.85MnO3−δ at ∼6 and ∼7 GPa, respectively. At low pressures the metal-insulator transition temperature (TMI) increases linearly up to a critical pressure, P* ∼3.4 GPa, followed by reduction in TMI at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in TMI below P*. The reduction in TMI at higher pressures is found to result from Jahn-Teller distortions of the MnO6 octahedra. The role of anharmonic interatomic potentials is discussed.  相似文献   

6.
S. Ogawa 《Surface science》2007,601(18):3838-3842
Ultraviolet photoelectron spectroscopy was used to measure the oxygen uptake, changes in work function due to the surface dipole layer of adsorbed-oxygen atoms, Δ?SDL, and changes in band bending due to the defect-related midgap state, ΔBB, simultaneously during oxidation on Si(0 0 1) surface at room-temperature, RT, under an O2 pressure of 1.3 × 10−5 Pa. The oxygen dosage dependence of Δ?SDL revealed that dissociatively adsorbed-oxygen atoms occupy preferentially dimer backbond sites at the initial stage of Langmuir-type adsorption, which is associated with a rapid increase of ΔBB. When raising temperature to ∼600 °C, such preferential occupation of the dimer backbond sites by oxygen atoms is less significant and ΔBB becomes smaller in magnitude. The observed relation between Δ?SDL and ΔBB indicates that point defects (emitted Si atoms + vacancies) are more frequently generated by oxygen atoms diffusing to the dimer backbond sites at lower temperature in RT −600 °C.  相似文献   

7.
Thin Li1+xMn2O4−δ films were deposited on several substrate materials (stainless steel, p-doped silicon and glassy carbon) by pulsed laser deposition. To obtain the correct thin film stoichiometries, targets with a different amount of excess lithium were required (Li1.03Mn2O4 + xLi2O; x = 2.5 and 7.5 mol%). The resulting polycrystalline thin films were characterized with respect to their morphology and electrochemical activity. It was found that only thin Li1+xMn2O4−δ films deposited on stainless steel and glassy carbon showed the typical insertion and deinsertion peaks of Li+ during cycling.  相似文献   

8.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

9.
This work presents a study on the mechanism of injection and charge transport through a CVD diamond/n+-Si interface. The current-voltage-temperature characteristics of CVD diamond/silicon heterojunctions measured in the temperature range 119-400 K have been interpreted according to thermionic theory and thermionic field-emission theory. This junction shows deviations from the ideal thermionic theory current model, suggesting the presence of surface states, thin-layer depletion and/or non-homogeneity in the diamond/silicon interface. The T0 anomaly has been used to explain the behaviour of the ideality factor with temperature. At very low temperatures tunnelling may occur because the E00 values for these junctions are close to the value expected by thermionic field-emission theory. The usual activation-energy plot deviates from linearity at low temperatures. This deviation has been corrected supposing a ln(JS/T2) versus 103/nT plot. Under these conditions the Richardson constant is found to be 0.819 A cm−2 K−2, which is close to the theoretical value of 1.2 A cm−2 K−2. Field-emission device is a promising application for diamond/silicon structure.  相似文献   

10.
The secondary ion mass spectrum of silicon sputtered by high energy C60+ ions in sputter equilibrium is found to be dominated by Si clusters and we report the relative yields of Sim+ (1 ≤ m ≤ 15) and various SimCn+ clusters (1 ≤ m ≤ 11 for n = 1; 1 ≤ m ≤ 6 for n = 2; 1 ≤ m ≤ 4 for n = 3). The yields of Sim+ clusters up to Si7+ are significant (between 0.1 and 0.6 of the Si+ yield) with even numbered clusters Si4+ and Si6+ having the highest probability of formation. The abundances of cluster ions between Si8+ and Si11+ are still significant (>1% relative to Si+) but drop by a factor of ∼100 between Si11+ and Si13+. The probability of formation of clusters Si13+-Si15+ is approximately constant at ∼5 × 10−4 relative to Si+ and rising a little for Si15+, but clusters beyond Si15 are not detected (Sim≥16+/Si+ < 1 × 10−4). The probability of formation of Sim+ and SimCn+ clusters depends only very weakly on the C60+ primary ion energy between 13.5 keV and 37.5 keV. The behaviour of Sim+ and SimCn+ cluster ions was also investigated for impacts onto a fresh Si surface to study the effects that saturation of the surface with C60+ in reaching sputter equilibrium may have had on the measured abundances. By comparison, there are very minor amounts of pure Sim+ clusters produced during C60+ sputtering of silica (SiO2) and various silicate minerals. The abundances for clusters heavier than Si2+ are very small compared to the case where Si is the target.The data reported here suggest that Sim+ and SimCn+ cluster abundances may be consistent in a qualitative way with theoretical modelling by others which predicts each carbon atom to bind with 3-4 Si atoms in the sample. This experimental data may now be used to improve theoretical modelling.  相似文献   

11.
Indium-tin oxide (ITO) films deposited on heated and non-heated glass substrates by a pulsed Nd:YAG laser at 355 nm and ∼2.5 J/cm2 were used in the fabrication of simple organic light-emitting diodes (OLEDs), ITO/(PVK + Alq3 + TPD)/Al. The ITO was deposited on heated glass substrates which possessed resistivity as low as ∼3 × 10−4 Ω cm, optical transmission as high as ∼92% and carrier concentration of about ∼5 × 1020 cm−3, were comparable to the commercial ITO. Substrate heating transformed the ITO microstructure from amorphous to polycrystalline, as revealed by the XRD spectrum. While the polycrystalline ITO produced higher OLED brightness, it was still lower than that on the commercial ITO due to surface roughness. A DLC layer of ∼1.5 nm deposited on this ITO at laser fluence of >12.5 J/cm2 improved its device brightness by suppressing the surface roughness effect.  相似文献   

12.
Results of step fluctuation experiments for Mo(0 1 1), using low-energy electron microscopy, are re-examined using recently developed procedures that offer accurate coefficients of surface mass diffusion. By these means, surface diffusion Ds is documented at T/Tm ∼ 0.5, while the crossover to relaxation driven by bulk vacancy diffusion is inferred for T/Tm ∼ 0.6. Here, Tm is the melting temperature Tm = 2896 K. We obtain Ds = 4 × 10−4 exp(−1.13 eV/kBT) cm2/s for the temperature interval 1080-1680 K. Possible indications of diffusion along step edges appear for T/Tm ∼ 0.4. The same measurements of step fluctuation amplitudes determine also the step stiffness, which by symmetry is anisotropic on Mo(0 1 1). It is shown that three independent procedures yield mutually consistent step stiffness anisotropies. These are (1) step fluctuation amplitudes; (2) step relaxation rate anisotropies; and (3) the observed anisotropies of islands in equilibrium on the Mo(0 1 1) surface. The magnitude of the step stiffness obtained from step edge relaxation is consistent with earlier measurements that determine diffusion from grain boundary grooving.  相似文献   

13.
This paper investigates the short-living absorption and the emission of CsI(Na) under a pulsed electron beam (Еe=0.25 MeV, t1/2=15 ns and W=0.003…0.16 J/cm2). The bands of singlet self-trapped excitons, as well as Na0 and Vk color centers have been detected in the transient absorption spectrum of CsI(Na). It has been found that the activator luminescence spectrum, peaking at 3.0 eV, fits a Gaussian (Em=3.0 eV and FWHM=0.44±0.02 eV at 80 K) and remains the same at different time delays within 10−8-10−3 s. The decay kinetics of the 3.0 eV emission has one nanosecond exponential component and two microsecond ones with time constants 1.0 and 3.0 μs, which remain unchanged within 78-150 K. It is concluded that the activator emission is due to the radiative annihilation of sodium-perturbed two halide excitons from the non-relaxed singlet state. The pathways of such excitons creation are discussed.  相似文献   

14.
Emission spectra of the b1Σ+(b0+) → X3Σ(X10+,X21) and a1Δ(a2) → X21 transitions of AsBr have been measured in the near-infrared spectral region with a Fourier-transform spectrometer. The arsenic bromide radicals were generated in fast-flow systems by reaction of arsenic vapor (Asx) with bromine and were excited by microwave-discharged oxygen. The most prominent features in the spectrum are the Δv = +1,0,−1, and −2 band sequences of the b1Σ+(b0+) → X3Σ(X10+) transition in the range 11 700-12 700 cm−1. With lower intensities, the Δv = 0 and −1 sequences of the b1Σ+(b0+) → X3Σ(X21) sub-system show up in the same range. Further to the red, between 6000 and 6700 cm−1, the Δv = 0, +1, and −1 sequences of the hitherto unknown a1Δ(a2) → X21 transition are observed. Analyses of medium- and high-resolution spectra have yielded improved molecular constants for the X10+, X21, and b0+ states and first values of the electronic energy and the vibrational constants of the a2 state.  相似文献   

15.
The current-voltage (I-V) characteristics of Al/p-Si Schottky barrier diodes (SBDs) with native insulator layer were measured in the temperature range of 150-375 K. The estimated zero-bias barrier height ΦB0 and the ideality factor n assuming thermionic emission (TE) theory show strong temperature dependence. Evaluation of the forward I-V data reveals an increase of zero-bias barrier height ΦB0 but decrease of ideality factor n with increase in temperature. The conventional Richardson plot exhibits non-linearity below 250 K with the linear portion corresponding to activation energy of 0.41 eV and Richardson constant (A*) value of 1.3 × 10−4 A cm−2 K−2 is determined from intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 A cm2 K2 for holes in p-type Si. Such behavior is attributed to Schottky barrier inhomogene ties by assuming a Gaussian distribution of barrier heights (BHs) due to barrier height inhomogeneities that prevail at interface. Also, ΦB0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of ΦB0 = 1.055 eV and σ0 = 0.13 V for the mean BH and zero-bias standard deviation have been obtained from this plot, respectively. Thus, the modified versus q/kT plot gives ΦB0 and A* as 1.050 eV and 40.08 A cm−2 K−2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 40.03 A cm−2 K−2 is very close to the theoretical value of 32 A K−2 cm−2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/p-Si Schottky barrier diodes with native insulator layer can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights.  相似文献   

16.
Emission spectra of the b1Σ+(b0+)→X3Σ(X10+) transition of phosphorus iodide have been measured with a high-resolution Fourier-transform spectrometer. The PI radicals were generated and excited in a fast-flow system by reaction of phosphorus vapor (Px) with iodine and microwave-discharged oxygen. Four sequences, Δv=0,+1,−1,−2, of the b1Σ+(b0+)→X3Σ(X10+) transition of PI comprising 28 bands were observed. Six bands were measured at high spectral resolution. Vibrational and rotational analyses have yielded accurate spectroscopic constants of the X10+ and b0+ states (in cm−1): X10+: ωe=371.296(4), ωexe=1.3302(9), Be=0.1194117(2), αB=−0.0005676(7), De=4.56(2) ×10−8; b0+: Te=11136.921(4), ωe=400.165(6), ωexe=1.345(2), Be=0.1239237(2), αB=−0.0005540(2), De=4.84(5) × 10−8, where the numbers in parentheses are the standard deviations of the parameters. No emissions of the b0+X21 sub-system nor of the a1Δ(a2)→X3Σ(X21) transition have been observed leaving PI the only group Va halide for which the spin splitting in the X3Σ ground state is still unknown.  相似文献   

17.
The electrical property of a KTiOPO4 single crystal was studied by means of a dielectric spectroscopy method in the temperature range from −100 to 100 °C. Dielectric dispersion began at a temperature, TS=−80 °C. It is believed that this dielectric dispersion is related to the ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energy concerned with hopping conduction is Ea∼0.20 eV above TS. TS=−80 °C can be the minimum temperature for the hopping K+ ion.  相似文献   

18.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

19.
D.M. Rampulla 《Surface science》2006,600(10):2171-2177
The rates of Br atom diffusion on several single crystalline Cu surfaces have been studied because of the potential impact of Br diffusion on the selectivity of alkyl bromide surface chemistry on Cu. Density functional theory (DFT) has been used to study the diffusion of isolated bromine atoms on a flat Cu surface, Cu(1 1 1), two Cu surfaces with straight steps, Cu(2 2 1) and Cu(5 3 3), and two kinked Cu surfaces, Cu(6 4 3) and Cu(5 3 1). Bromine diffusion is rapid on the flat Cu(1 1 1) surface with a barrier of ΔEdiff = 0.06 eV and a hopping frequency of ν = 4.8 × 1010 s−1 at 150 K. On the stepped and kinked surfaces the effective diffusion barriers lie in the range ΔEdiff = 0.18-0.31 eV. Thus the rates of diffusion are many orders of magnitude slower on stepped and kinked Cu surfaces than on the Cu(1 1 1) surface. Nonetheless, at temperatures relevant for alkyl bromide debromination on Cu surfaces, bromine atoms remain sufficiently mobile that they can explore all available binding sites on the timescale of the debromination reaction.  相似文献   

20.
Emission spectra of RuN have been recorded at high resolution in the region 12 000-35 000 cm−1 using a Fourier transform spectrometer. The molecules were excited in a ruthenium hollow cathode lamp in the presence of about 2.5 Torr of Ne and 5 m Torr of N2. New bands with origins near 17 758.1, 18 866.4, 19 800.4 and 20 721.5 cm−1 have been assigned as the 0-1, 0-0, 1-0, and 2-0 bands of a new 2Σ+-2Σ+ system with the lower state as the ground state. This transition has been labeled as F2Σ+-X2Σ+, with the F2Σ+ state arising from the 1σ22441 configuration. A rotational analysis of these bands has been carried out and spectroscopic constants have been extracted. The principal equilibrium constants for the ground state of RuN are ΔG(1/2)″=1108.3235(22) cm−1, Be″=0.5545023(42) cm−1, αe″=0.0034468(57) cm−1, re″=1.5714269(60) Å, while the equilibrium constants for the excited state are ωe′=946.8471(40) cm−1, ωexe′=6.4229(14) cm−1, Be′=0.50085(21) cm−1, αe′=0.00375(10) cm−1, re′=1.65345(34) Å. This transition is analogous to the E2Σ+-X2Σ+ system of RhC (W. J. Balfour et al., J. Mol. Spectrosc.198, 393 (1999)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号