首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
Mechanical properties of layers of intact liposomes attached by specific interactions on solid surfaces were studied by atomic force microscopy (AFM) force measurements. Force-distance measurements using colloidal probe tips were obtained over liposome layers and used to calculate Young's moduli by using the Hertz contact theory. A classical Hertz model and a modified Hertz one have been used to extract Young's moduli from AFM force curves. The modified model, proposed by Dimitriadis, is correcting for the finite sample thickness since Hertz's classical model is assuming that the sample is infinitely thick. Values for Young's moduli of 40 and 8 kPa have been obtained using the Hertz model for one and three layers of intact liposomes, respectively. Young's moduli of approximately 3 kPa have been obtained using the corrected Hertz model for both one and three layers of surface-bound liposomes. Compression work performed by the colloidal probe to compress these liposome layers has also been calculated.  相似文献   

2.
To study the interaction between liposomes and proteins, intact liposomes were immobilized on a metal planar support by chemical binding and/or bioaffinity using a quartz crystal microbalance (QCM). A large decrease in the resonance frequency of quartz crystal was observed when the QCM, modified by a self-assembled monolayer (SAM) of carboxythiol, was added to liposome solutions. The stable chemical immobilization of intact liposomes onto SAM was judged according to the degree with which adsorbed mass depended on the prepared size of liposomes, as well as on the activation time of SAMs when amino-coupling was introduced, where the liposome coverage of electrodes was 69+/-8% in optimal conditions. When avidin-biotin binding was used on amino-coupling liposome layers, liposome immobilization finally reached 168% coverage of the electrode surface. Denatured protein was also successfully detected according to the change in the frequency of the liposome-immobilized QCM. The adsorbed mass of denatured carbonic anhydrase from bovine onto immobilized liposomes showed a characteristic peak at a concentration of guanidine hydrochloride that corresponded to a molten globule-like state of the protein, although the mass adsorbed onto deactivated SAM increased monotonously.  相似文献   

3.
The spontaneous, dynamic formation of hydrophobic active sites in lipid bilayer membranes is studied and characterized. It is shown that the rates of formation and consumption of these active sites control at least two important properties of liposomes: their affinity for hydrophobic surfaces and the rate by which they spontaneously release encapsulated molecules. The adhesion and spreading of liposomes onto hydrophobic polystyrene nanoparticles and the spontaneous leakage of an encapsulated fluorescent dye were monitored for different liposome compositions employing Cryo-TEM, DLS, and fluorescence measurements. It was observed that an apparently homogeneous, monodisperse liposome suspension behaves as if composed by two different populations: a fast leaking population that presents affinity for the hydrophobic substrate employed, and a slow leaking population that does not attach immediately to it. The results reported here suggest that the proportion of liposomes in each population changes over time until a dynamic equilibrium is reached. It is shown that this phenomenon can lead to irreproducibility in, for example, spontaneous leakage experiments, as extruded liposomes leak much faster just after preparation than 24 h afterward. Our findings account for discrepancies in several experimental results reported in the literature. To our knowledge, this is the first systematic study addressing the issue of an existing intrinsic heterogeneity of liposome suspensions.  相似文献   

4.
Liposomes that are surface-bound to a biomaterial such as a contact lens are of interest for localized delivery of therapeutic agents, but it is not known whether such liposome layers are sufficiently robust. The stability of a dense, PEG-functionalized layer of liposomes, affinity-bound onto a multilayer coated surface, was tested under various stress conditions using colloid-probe atomic force miscroscopy (AFM). The different stress effects were generated by varying the applied normal load of the probe and the impinging fluid shear through different approach velocities and by varying the applied lateral forces by scanning under increasing force loads. The effect of applied forces (normal and lateral) was further investigated by coating the probe with a layer of albumin. The liposomes remained intact following the ramping of both protein-coated and uncoated probes under the normal and lateral loads. The low-fouling nature of these liposomes, with respect to nonspecific protein adsorption, was also demonstrated from the interaction force measurements which showed only weak adhesion from the protein layer during the contact period of the albumin-coated probe. The observed adhesive interactions were concluded to be a direct result of the applied load from the probe, during the force measurements, rather than from attraction of the protein molecules for the surface-bound liposomes. The low frictional response of the liposome layer indicated the viscoelastic nature of these molecules, which enabled liposome structure retention during the continuous load application. The demonstrated stability of the liposomes presents a system of viable and localized drug delivery in, for example, ophthalmic applications.  相似文献   

5.
Phospholipase A(2) (PLA(2))-catalyzed membrane leakage can be detected by immobilized liposomes containing a self-quenching fluorescent dye, calcein, on an open column using off-line analysis with a fluorescent spectrophotometer. The calcein release was found to be affected by the pH value, incubation time, and liposome compositions. The fluorescent signal from the negatively charged liposomes hydrolyzed by PLA(2) was 5 times higher than that from neutral liposomes. We utilized this enzymatic reaction to amplify signal to detect polychlorinated biphenyls (PCBs). To achieve this goal, we conjugated an analogue of PCB, 3,4-dichloroaniline, to PLA(2). The competitive immunoreaction between the 3,4-dichloroaniline-PLA(2) conjugate and PCB samples on the anti-PCB antibody column caused the release of the bound PLA(2) conjugates in proportion to the PCB concentration. The released PLA(2) conjugates was then passed through the tandem fluorescent liposome column causing release of fluorescent dye from the liposomes. Therefore, the signal of immunocompetitive assay was amplified on the fluorescent liposome column. The tandem column system achieves a high sensitivity by detecting the PCB concentration as low as 0.5 ng/mL in less than 20 min. It has great potential in detecting other pollutants, and has been used for sensitive immunoassays.  相似文献   

6.
The radiowave dielectric properties of aqueous heterogeneous systems during the complexation of charged polyions and oppositely charged liposomal particles have been measured in a wide frequency range, between 100 Hz and 2 GHz. The formation of a polyion-liposome complex driven by the correlated polyion adsorption at the particle surface implies two concomitant effects referred to as reentrant condensation and charge inversion. Both of them are governed by electrostatic interactions and there is now strong evidence, based on experiments and simulations, that counterion release is the driving force of the aggregation process. From this point of view, dielectric technique may offer a suitable tool in the investigation of the structural properties of these aggregates. In spite of the fact that interaction of polyions with oppositely charged surfaces was extensively experimentally investigated, there are no papers concerning the dielectric properties during the polyion-induced aggregation. To get an insight into this important topic, the authors present here an extensive set of radiowave dielectric measurements of liposomal vesicle aqueous suspensions where the liposome aggregation was induced by an oppositely charged polyion. The aggregation was followed from the beginning, when most of the isolated liposomes predominate, up to the formation of polyion-coated liposomes of inverted charge, crossing the isoelectric condition, where large, almost neutral, aggregates appear. The authors describe the observed dielectric dispersions as due to counterion polarization in the adjacency of the liposome and liposome aggregate surface, primarily governed by the zeta potential, according to the standard electrokinetic model.  相似文献   

7.
The present work reports on enzyme attachment on and photoinduced release from TiO2 surfaces. TiO2 layers (amorphous and anatase) were modified with 3-aminopropyltriethoxysilane (APTES), followed by attachment of vitamin C and horseradish peroxidase (HRP). Using step by step XPS characterization and vis-spectroscopy we show that upon UV illumination the linker chain to the protein can be cut, releasing active HRP into the environment. The head silane group remains attached to the TiO2 surface. The kinetics of this photoinduced release is significantly faster for the anatase form of TiO2 compared with amorphous material. The results indicate that UV induced chain scission represents a very versatile tool for payload release from TiO2 surfaces.  相似文献   

8.
A method was developed to functionalize biomedical metals with liposomes. The novelty of the method includes the plasma-functionalization of the metal surface with proper chemical groups to be used as anchor sites for the covalent immobilization of the liposomes. Stainless steel (SS-316) disks were processed in radiofrequency glow discharges fed with vapors of acrylic acid to coat them with thin adherent films characterized by surface carboxylic groups, where liposomes were covalently bound through the formation of amide bonds. For this, liposomes decorated with polyethylene glycol molecules bearing terminal amine-groups were prepared. After ensuring that the liposomes remain intact, under the conditions applying for immobilization; different attachment conditions were evaluated (incubation time, concentration of liposome dispersion) for optimization of the technique. Immobilization of calcein-entrapping liposomes was evaluated by monitoring the percent of calcein attached on the surfaces. Best results were obtained when liposome dispersions with 5mg/ml (liposomal lipid) concentration were incubated on each disk for 24h at 37°C. The method is proposed for developing drug-eluting biomedical materials or devices by using liposomes that have appropriate membrane compositions and are loaded with drugs or other bioactive agents.  相似文献   

9.
An exciting new direction in responsive liposome research is endogenous triggering of liposomal payload release by overexpressed enzyme activity in affected tissues and offers the unique possibility of active and site-specific release. Bringing to fruition the fully expected capabilities of this new class of triggered liposomal delivery system requires a collection of liposome systems that respond to different upregulated enzymes; however, a relatively small number currently exist. Here we show that stable, approximately 100 nm diameter liposomes can be made from previously unreported quinone-dioleoyl phosphatidylethanolamine (Q-DOPE) lipids, and complete payload release (quenched fluorescent dye) from Q-DOPE liposomes occurs upon their redox activation when the quinone headgroup possesses specific substituents. The key component of the triggerable, contents-releasing Q-DOPE liposomes is a "trimethyl-locked" quinone redox switch attached to the N-terminus of DOPE lipids that undergoes a cleavage event upon two-electron reduction. Payload release by aggregation and leakage of "uncapped" Q-DOPE liposomes is supported by results from liposomes wherein deliberate alteration of the "trimethyl-locked" switch completely deactivates the redox-destructible phenomena (liposome opening). We expect that Q-DOPE liposomes and their variants will be important in treatment of diseases with associated tissues that overexpress quinone reductases, such as cancers and inflammatory diseases, because the quinone redox switch is a known substrate for this group of reductases.  相似文献   

10.
Won SH  Sim SJ 《The Analyst》2012,137(5):1241-1246
Polydiacetylene (PDA) liposomes possess unique properties that allow liposomes to change color and emit fluorescence in response to stimuli such as temperature, antibody-antigen interaction, pH, mechanical stress, and organic solvent. They have been studied extensively as signal transducers in biosensor applications. Here, we describe an antibody-based biosensor using PDA liposomes for detection of human immunoglobulin E (hIgE). Target hIgE chemically bound to hIgE monoclonal antibodies immobilized on PDA liposomes and the fluorescent signals were slightly increased depending on the target protein concentration. As the primary response, the hIgE could be detected to below 10 ng mL(-1). However, fluorescent signals were dramatically increased depending on the target protein concentration when gold nanoparticle-conjugated polyclonal antibody probes were added on the PDA liposomes after the primary immune reaction. A PDA liposome biosensor could detect the hIgE as low as 0.1 ng mL(-1) and the sensitivity was increased up to one hundred times higher than the primary response. As a result, we confirmed that gold nanoparticle-conjugated polyclonal antibody probes efficiently enhanced the fluorescent signal of the PDA liposome biosensor chip. This strategy can be useful to detect proteins of ultra-low concentration.  相似文献   

11.
In this study, the neutral and cationic liposomal formulations of Colistimethate sodium (CMS), an antibiotic for multi-drug resistant gram-negative bacteria, were prepared and electrochemical quantification of CMS from these liposomes were achieved. This is the first study of the electrochemical detection of CMS released from liposomes. First, the electrochemical properties of CMS were analysed, then the encapsulation efficiency, and the release kinetic of CMS from liposomes were determined with Differential Pulse Voltammetry (DPV) measurements. In addition, Cyclic Voltammetry were applied to determine oxidation signal of CMS. A higher encapsulation efficiency was found in the cationic liposome compared to the neutral liposome. Moreover, CMS was controlled released from liposomes with zero-order drug release kinetics.  相似文献   

12.
The present study describes a novel approach based on electrochemical impedance measurements to follow the adsorption of giant liposomes on protein-coated solid surfaces with a time resolution in the order of seconds. The technical key features are circular gold-film electrodes as small as a few hundred micrometers in diameter and measurements of the electrode capacitance using AC signals in the kilohertz regime. Using Monte Carlo simulations, we were able to support the experiments and extract the rate constant of liposome adsorption. Besides monitoring the adsorption of liposomes on protein-coated surfaces, we also applied this technique to study shape fluctuations of the adsorbed vesicles and compared the corresponding power spectra with those recorded for hard particles and living animal cells.  相似文献   

13.
Nanoliposomes are important carriers capable of packaging drugs for various delivery applications through passive targeting tumor sites by enhancing permeability and retention effect. Radiolabeled liposomes have potential applications in radiotherapy and diagnostic imaging. However, the physico-chemical instability of liposomes during manufacturing and storage limits their extensive application. Therefore, considerable numbers of studies have been made on the stability of liposomes over the last few years in order to overcome this problem. In this study, we attempted to prepare polymer-coated liposomes using water-soluble chitosan in order to enhance the stability of rhenium(III) chloride-incorporated liposomes. They were characterized by an electrophoretic light-scattering spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectrometer, and phase-contrast microscopy. The chitosan-coated liposomes are spherical and the particle size is about 800–850 nm. Incorporation of chitosan into the liposome bilayer decreased rhenium(III) chloride release from the liposome due to an increased rigidity of the liposome membrane structure. Chitosan-coated liposomes showed a higher stability compared with the stability of non-coated liposomes. The release characteristics of rhenium(III) chloride encapsulated in the liposome were taken as a measure of stability of the liposome membrane.  相似文献   

14.
We have found an interesting immobilization technique of liposomes on electron-beam exposed resist surfaces. The immobilized liposomes have been visualized by the atomic force microscope and have shown well-organized three-dimensional physical structures, in which the liposomes maintain their shapes and sizes similar to those of the original design in prepared solution. The immobilization is based on a strong static charge interaction between the resist surface and the liposomes. Further experiments show that very strong charge in the surfaces produces the firm immobilization of the liposome. We believe these findings can be related to various liposome applications such as drug delivery system, electrochemical or biosensors, and nanoscale membrane function studies.  相似文献   

15.
Multilayers film of nanostructured citrate-stabilized gold particles (AuNPs) has been fabricated based on the layer-by-layer (LBL) technique using a self-assembled monolayer of 1,4-benzenedimethanethiol (BDMT). The formation of AuNPs and BDMT self-assemblies as alternative multilayers was confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and quartz crystal microbalance (QCM). The formation of uniform AuNP layers with an average monolayer thickness of 5-6 nm was obvious in the TEM images. The existence of BDMT molecules as cross linkers for the AuNPs' layers was proved by XPS measurements. The greater affinity of AuNPs' layers to bind BDMT molecules in comparison with the bare Au bulk electrode was revealed by QCM measurements. Electrochemically, the AuNPs' layers on the electrode surface did not only catalyze the reduction of oxygen (ca. 100-mV positive shift of the reduction peak potential compared with that at the bare Au bulk electrode) but also showed a fascinating nature of working as a renewed activated-electrode surface; a zigzag response was observed for oxygen reduction during alternative immobilization of BDMT and the AuNP layer. The self-assembly of a new AuNPs layer restored the catalytic activity that was entirely blocked by the preceding BDMT layer.  相似文献   

16.
Phospholipid liposomes (100-200 nm diameter) are deposited onto solid substrates after stabilizing them against fusion with the solid by allowing charged nanoparticles to adsorb at approximately 25% surface coverage. The immobilized vesicles remain stable over a period of days. Epifluorescence imaging shows that they diffuse freely over surfaces with the same charge but adsorb tightly onto surfaces with opposite charge. Nanoparticle adsorption to surface patterns of opposite charge provides a facile method to create large-scale surface-supported arrays of intact liposomes. This surface attachment method is simple chemically and applies generally for solid surfaces that can be hydrophobic or hydrophilic. Offering routes to localize proteins and other vesicle-contained objects at surfaces in tailored spatial patterns, these immobilized liposome arrays may find diverse applications in the emerging field of nanobiotechnology.  相似文献   

17.
The adhesion of lipid vesicles (liposomes) having controlled chemical and physical structure to polymer supported human serum albumin (HSA) thin layers was investigated by a spectrofluorimetric technique. The vesicle lipid bilayer was labeled with a small amount of an apolar fluorescent probe (diphenylexathriene) and the vesicle suspension was set in contact with the protein film. After washing and drying, the adhering vesicles containing sample was dissolved in chloroform and the homogeneous solution was analyzed by standard spectrofluorimetric techniques. Different parameters of the lipid bilayer, suspending solution, and protein film were varied and their influence on the liposome binding was investigated. Concerning the lipid bilayer, we studied the effect of liposome surface charge by using different mixtures of neutral (dipalmitoyl-phosphatidylcholine) and charged (dipalmitoyl-phosphatidic acid) phospholipids and the fluid or gel nature of the lipid bilayer (switched on and off by temperature variation). Variations of the local environment involve Ca(2+) and H(+) changes in the millimolar range as well as different hydrodynamical flows (in the range 0.1-10 cm/s). Preliminary measurements using different protein layers were also performed. Results show: (a) negligible adhesion without the protein layer, (b) the presence of a maximum for the liposome adhesion vs ion concentration (depending on the liposome composition and kind of the adsorbed ions), (c) a much stronger adhesion for vesicles in the fluid phase (overcoming the entropy-driven desorption increase with temperature), and (d) a dramatic lowering of the adhesion capability under hydrodynamic flow. Points a-c have been interpreted on the basis of a simple mechanoelectrical model. Copyright 2000 Academic Press.  相似文献   

18.
The field of liposome (vesicle) research has expanded considerably over the last 30 years. In physical chemical terms liposomes have many of the characteristics of colloidal particles and their stability is determined in part by the classical surface forces. It is now possible to engineer a wide range of liposomes varying in size, phospholipid composition and surface characteristics. The surfaces of liposomes can be modified by the choice of bilayer lipid as well as by the incorporation and covalent linkage of proteins (e.g. antibodies and sugar binding proteins [lectins]), glycoproteins and synthetic polymers. Much of the impetus for liposome design has come from their potential value as drug delivery systems. The development of technologies for the production of such a range of liposome systems has presented interesting problems in the characterisation of their properties. The review addresses the progress that has been made in characterising the surfaces of different types of liposomes with specific reference to their electrophoretic properties and their interpretation and the physical interactions between liposomal bilayers.  相似文献   

19.
In order to design liposomes which release their contents in a glucose-sensitive manner, the surfaces of egg phosphatidylcholine (egg PC) liposomes or dioleoylphosphatidylethanolamine (DOPE) liposomes were modified with the copolymer of N-isopropylacrylamide/methacrylic acid/octadecylacrylate and hydrophobically modified glucose oxidase (EC 1.1.3.4.). Whichever the liposomes were prepared with egg PC or DOPE, an extensive release of calcein was observed at acidic conditions. And DOPE liposomes were more pH sensitive than egg PC liposomes in terms of the release. In glucose-dependent calcein release experiment, there was no release for 180 min when the suspension of liposome was free of glucose. When the glucose concentration was 50 mg/dl, no appreciable amount of calcein was released for the first 50 min, but a significant release was observed for the last 130 min. At glucose concentration of 200 mg/dl, calcein release became more extensive and the releases for 180 min from egg PC and DOPE liposome were 84% and 98%, respectively.  相似文献   

20.
This study reports the fouling of carboxymethyl dextran (CMD) layers in cell culture medium, fibronectin, and serum solutions. CMD layers were covalently immobilized onto amine groups available either on an n-heptylamine plasma polymer (HApp) layer or onto a polyethylenimine (PEI) coating grafted to an acetaldehyde plasma polymer (AApp) layer. The successful immobilization of the graft layers was demonstrated by X-ray photoelectron spectroscopy (XPS). Primary amines on HApp and AApp + PEI surfaces were quantified using a colorimetric assay. Quartz crystal microbalance (QCM) was used to investigate in real-time the fouling of the graft layers upon incubation in cell culture medium (RPMI), fibronectin, and foetal bovine serum (FBS) solutions. HApp, AApp and AApp + PEI layers exhibited large fouling in fibronectin and FBS solutions, while fouling in RPMI cell culture medium was not significant. Protein repellent properties of CMD layers in FBS and fibronectin have been demonstrated compared to the other tested surfaces. QCM has shown that both CMD layers were fouled to a small extent in RPMI medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号