首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Multiple intramolecular interactions help to stabilize the novel [2]pseudorotaxanes formed from 1,2-bis(pyridinium)ethane dications (which act as axles) and 24-membered crown ethers (which act as wheels; see structure). This is the first successful sythesis of [2]pseudorotaxanes with [24]crown-8 as the macrocycle.  相似文献   

2.
Linear exodentate pyridinium ligands such as 1,2-bis(4,4'-bipyridinium)ethane or its bis N-oxide derivative can be used as axles for the formation of [2]pseudorotaxanes utilising 24-membered crown ethers such as dibenzo-24-crown-8 ether (DB24C8) as the wheel. These [2]pseudorotaxanes can be used to construct coordination networks using transition or lanthanide metal ions as the connecting nodes. 1-, 2- and 3D metal-organic rotaxane frameworks (MORFs) are possible. The resulting materials contain mechanically interlocked units and may be the forerunners of unique solids which contain machine-like components in an ordered array.  相似文献   

3.
Protonated 1,2-bis(4,4'-bipyridinium)ethane axles and dibenzo-24-crown-8 ether wheels thread to form [2]pseudorotaxanes which associate in the solid state to form pseudopolyrotaxanes by hydrogen bonding or pi-stacking.  相似文献   

4.
A 1,2-bis(pyridinium)ethane type axle containing a terpyridine chelate group, when combined with 24-membered crown ethers, forms [2]pseudorotaxanes, the stability of which can be controlled by coordination of metal ions with different geometries.  相似文献   

5.
This tutorial review documents the discovery and application of the supramolecular template (1,2-bis(pyridinium)ethane) subset (24-crown-8) for preparing interlocked molecules. Focus is on the supramolecular chemistry of the pseudorotaxanes formed with various pyridinium axles and crown ether wheels and how this particular class of mechanically linked molecule has been (i) used to construct rudimentary molecular machines such as molecular shuttles and flip switches, (ii) used as ligands for coordination chemistry and (iii) used to create metal-organic framework (MORF) materials.  相似文献   

6.
A chemically addressable, bistable [2]rotaxane, which incorporates a dumbbell-shaped component containing both secondary dialkylammonium and 1,2-bis(pyridinium)ethane recognition sites for its ring component, dibenzo[24]crown-8 (DB24C8), has been assembled. (1)H NMR spectroscopy has demonstrated that deprotonation (and reprotonation) of the secondary dialkylammonium (dialkylamine) recognition site induces the DB24C8 ring to move away from this site to the 1,2-bis(pyridinium)ethane one (and back again) in a discrete manner, particularly when the experiment is performed in CDCl(3) solution.  相似文献   

7.
To investigate the possibility of incorporating the 1,2-bis(pyridinium)ethane[subset or is implied by]24C8 [2]pseudorotaxane motif into dendrimer like macromolecules, a series of branched [n]rotaxanes were prepared employing multiple dibenzo-24-membered crown ether wheels with various aromatic core structures and the 1,2-bis(4,4'-dipyridinium)ethane axle. Yields of branched [2]-, [3]- and [4]rotaxanes were dependent on the size of the core and the relative proximity of the crown ethers arranged around the core unit.  相似文献   

8.
A pair of bistable [2]rotaxane, molecular shuttles were prepared that combine 1,2-bis(pyridinium)ethane and benzylanilinium recognition sites; acid-base controlled shuttling of DB24C8 was accompanied by a change in colour and/or fluorescence intensity.  相似文献   

9.
[2]Rotaxanes utilising the 1,2-bis(pyridinium)ethane, 24-crown-8 motif can exist in two distinct co-conformations whose relative abundances are solvent dependent.  相似文献   

10.
Michael A. Bolla 《Tetrahedron》2008,64(36):8423-8427
Comparison of 1,2-bis(pyridinium)ethane axles containing iso-nicotinate esters (R=ethyl, iso-propyl, cyclohexyl, cycloheptyl) as the pyridinium unit shows that the cyclohexyl group provides a stopper size that allows slippage to be used as a method for pseudorotaxane/rotaxane formation employing dibenzo-24-crown-8 ether (DB24C8) as the wheel. Rates of complexation and decomplexation were measured in a number of solvent systems and the kinetic and thermodynamic parameters associated with the process reported.  相似文献   

11.
[reaction: see text] Addition of acid and base allows switching between two different structures in a push-pull bis(pyridinium)ethane axle, controlling its ability to form [2]pseudorotaxanes with a dibenzo-24-crown-8 ether wheel.  相似文献   

12.
A class of coordination polymers in which the linking ligands are mechanically interlocked rotaxane molecules is reviewed. To date, four different, axle - wheel templating motifs have been used to create the [2]pseudorotaxane linkers for these unique solid-state materials; (1) protonated diaminoalkane axles with cucurbit[6]uril wheels, (2) 1,2-bis(4,4'-bipyridinio)ethane axles with dibenzo[24]crown-8 wheels, (3) 2,6-naphthalene dicarboxylate axles with tetra-imidazolium macrocycle wheels and (4) a Cu(i) complex of a 1,10-phenanthroline containing dicarboxylate axle with a 1,10-phenanthroline containing crown ether wheel. The synthesis and solid state structure of each coordination polymer is described. The future directions of this area of research and some designs for the next generation of these compounds are discussed.  相似文献   

13.
In the presence of 1,2-bis(4,4'-dipyridinium)ethane, p-sulfonatocalix[5]arene (C5AS) adopts an unseen partial-cone conformation to form back-to-back dimers, whereas C5AS crystallizes in face-to-face dimers to form a wavy layer, rather than the expected bilayer, arrangement upon complexation with 1,2-bis(pyridinium)ethane.  相似文献   

14.
Linear 1,2-bis(pyridinium)ethane 'axles' and macrocyclic 24-membered crown ether 'wheels' (, and ) combine to form [2]pseudorotaxanes. These interpenetrated adducts are held together by N+...O ion-dipole interactions, a series of C-H...O hydrogen bonds and pi-stacking between electron-poor pyridinium rings of the axle and electron-rich catechol rings of the wheel. 1H NMR spectroscopy was used to identify the structural details of the interaction and to determine the thermodynamics of the binding process in solution. Analysis of nine of these adducts by single crystal X-ray crystallography allowed a detailed study of the non-covalent interactions in the solid state. A wide variety of structural changes could be made to the system. The versatility and potential of the template for the construction of permanently interlocked structures such as rotaxanes and catenanes is discussed.  相似文献   

15.
Cations derived from 1,2-bis(benzimidazolium)ethane can penetrate the cavity of dibenzo-24-crown-8 macrocycles to produce a new family of [2]pseudorotaxanes. These supramolecular structures are held together by a series of charge-assisted hydrogen bonds (+)N-H[dot dot dot]O, ion-dipole and pi-stacking interactions. These new adducts were fully characterised by NMR spectroscopy, ESI mass spectrometry and single-crystal X-ray diffraction. The effect of electron-donating and electron-withdrawing groups on the association constants was also analyzed. Chemical control of the threading/unthreading process was acheived by the alternate addition of acid and base.  相似文献   

16.
New dibenzo[24]crown‐8 ether derivatives were prepared that contain appendages with thioether donors that can coordinate to a metal ion. These macrocycles were then combined with 1,2‐bis(pyridinium) ethane axles to create two types of [2]rotaxane ligands; those with the four thioether donors on the crown ether and those with six donor groups, four from the crown ether and two more attached to the stoppering groups of the dumbbell. The crown ethers and both types of [2]rotaxane ligands were allowed to react with AgI ions to form metal‐organic rotaxane framework (MORF) style coordination polymers. The interlocked hexadentate ligand forms the first example of a new type of lattice containing interwoven frameworks resulting from both interpenetration of frameworks due to the presence of an interlocked ligand and more classical interpenetration of independent frameworks.  相似文献   

17.
A triethylphosphonium group attached to a pyridinium ethane moiety can be used as an axle for the self-assembly of [2]pseudorotaxanes and [2]rotaxanes. Although [2]pseudorotaxane formation is limited due to the bulk of the PR4+ group, [2]rotaxanes can be formed utilising 24-crown-8 ether, benzo-24-crown-8 ether and naphtho-24-crown-8 ether. The synthesis of these [2]rotaxanes and the X-ray structure of the [2]rotaxane containing a 24-crown-8 ether wheel are described. When the crown ether contains an aromatic group two possible conformational isomers exist; these are identified at low temperature by 1H and 31P NMR spectroscopy.  相似文献   

18.
Minjae Lee 《Tetrahedron》2010,66(35):7077-4817
1,2-Bis[N-(N′-alkylimidazolium)ethane salts form complexes presumed to be pseudorotaxanes with crown ether and cryptand hosts. The association constants of 1,2-bis[N-(N′-butylimidazolium)]ethane bis(hexafluorophosphate) with dibenzo-24-crown-8 and a dibenzo-24-crown-8-based pyridyl cryptand were estimated as 24 (±1) and 348 (±30) M−1, respectively, in acetonitrile at 25 °C. The pseudorotaxane-like structure of the 1:2 complex of the N′-methyl analog with the cryptand was observed by X-ray crystallography. Replacement of the ethylene spacer with propylene and butylene spacers resulted in Ka values an order of magnitude smaller.  相似文献   

19.
Fréchet‐type dendrons (G0–G3) were added as both axle stoppering units and cyclic wheel appendages in a series of [2]rotaxanes, [3]rotaxanes, and molecular shuttles that employ 1,2‐bis(pyridinium)ethane axles and 24‐membered crown ethers wheels. The addition of dendrimer wedges as stoppering units dramatically increased the solubility of simple [2]rotaxanes in nonpolar solvents. The X‐ray structure of a G1‐stoppered [2]rotaxane shows how the dendritic units affect the structure of the interlocked components. Increased solubility allows observation of how the interaction of dendritic units on separate components in interlocked molecules influences switching properties and molecular size. In a series of [2]rotaxane molecular shuttles incorporating two recognition sites, it was demonstrated that an increase in generation on either the stoppering unit or cyclic wheel could influence both the rate of shuttling and the site preference of the wheel on the axle.  相似文献   

20.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号