首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cluster anion [Fe33-Se)(CO)9]2- (I) was isolated as a salt (Et4N)2[I] by the reaction of Fe(CO)5 with Na2Se in isopropanol. The protonated form, (μ-H)2Fe33-Se)(CO)9 (II), was obtained by acidifying the reaction mixture and used for the synthesis of the heterometallic cluster FeMo23-Se)(CO)7Cp2 (III), CP=η5-C5H5. The structure of I and III was established by X-ray diffraction analysis. Crystals I are monoclinic, a=14.210(3), b=11.547(3), c=19.831(2), Å, β=90.92(2)°, Vcell=3254(1) Å3, space group P2/c, Z=4, dcalc=1.550 g/cm3, Syntex P21, λCuKα, R(F)=0.1333 for 1264 Fhkl>6σ(Fhkl). Crystals III are monoclinic, a=20.440(5), b=12.771(3), c=16.342(4) Å, β=113.80(2)°, Vcell=3903(2) Å3, space group P21/c, Z=8, dcalc=2.222 g/cm3, Syntex P21, λCuKα, R(F)=0.0734 for 1116 Fhkl>4σ(Fhkl). The structure of II was inferred from the Mössbauer, IR, and1H and77Se NMR spectroscopy data.  相似文献   

2.
MoO42? is reduced by diethyldithiocarbamate (Et2dtc?) on prolonged digestion in aqueous medium whereby the complex [Mo2VO2S2(Et2dtc)2] is formed. The central moiety Mo2O2S22+ has a high formation tendency. When [Mo2V(S2)6]2? is refluxed with Et2dtc? in ethanol, [Mo2VS (Et2dtc)2] is formed, the X-ray crystal structure of which has been determined (space group P212121, a = 10.550(2) Å, b = 13.820(5) Å, c = 14.723(12) Å, dc = 1.90 g · cm3?, Z = 4). The Mo? Mo distance of the diamagnetic compound is 2.817(2) Å and the average Mo=St distance 2.099(4) Å.  相似文献   

3.
Crystal structure of (Et4N)[{μ 3-SbI}Fe3-SbI}Fe3Cp(CO)10] was determined by X-ray diffraction analysis. The compound was synthesized by the reaction between (Et4N)2[Fe2(CO)8] and CpFe(CO)2SbI2 in a THF solution with cooling in an argon atmosphere. The crystals are monoclinic, a=12.792(2), b=14.152(3), c=17.373(3) Å, β=92.32(1)°, Vcell=3143(1) Å3, space group P21/n, Z=4, dcalc=1.885 g/cm3, Syntex P21, λCuKα radiation, R(F)=0.0744 for 877 Fhkl>6σ(Fhkl). The data were corrected for crystal decomposition according to the drop in the intensities of control reflections (by 23% during 29 h X-ray exposure). In the cluster anion, the Sb?Fe distances (ave. 2.57(1) Å) and the I?Sb?Fe and Fe?Sb?Fe angles (ave. 102.7(6) and 115.4(4)°) have virtually the same values as in other known complexes containing HalSbFe3 and SbFe4 fragments. The Fe...Fe distances of 4.312-4.369 Å indicate that the metal-metal bonds are absent.  相似文献   

4.
[Mo3S(S2)3(dtc)3]I, [Mo3S(SeS)3(dtc)3](dtc), and [Mo3Se(Se2)3(dtc)3](dtc) (dtc = N,N-diethyldithiocarbamate) were investigated by liquid SIMS-FTMS. The fragmentation pathways were essentially the same for the three compounds and can be explained by two types of fragmentation processes: stepwise abstraction of S/Se atoms as exemplified by the series [Mo3Xz(dtc)3]+ (4 ? z ? 7, X = S, Se), and ligand dissociation, as indicated by the generation of [Mo3Xz(dtc)2]+ (5 ? z ? 7, X = S, Se). The exclusive elimination of the Se-atoms from [Mo3S(Sax-Seeq)3(dtc)3]+ confirmed the inequivalent reactivity of the bridging atoms in axial and equatorial position as observed in previous studies. Collision-induced decomposition (CID) of [Mo3S7(dtc)3]+ ( 1 ), [Mo3S6(dtc)3]+ ( 2 ), [Mo3S(Sax–Seeq)3(dtc)3]+ ( 3 ), and [Mo3Se7(dtc)3]+ ( 4 ) revealed distinctly different fragmentation reactions for the SIMS and CID mode. CID of 1, 3 , and 4 resulted in a two-step reaction with the exclusive elimination of diatomic molecules XY (X,Y = S/Se). In the case of 3 , the selective elimination of Se2 indicated the abstraction of two Se-atoms located in equatorial positions of two different bridging groups. This result is discussed in terms of mechanisms, based on labile M? Xeq and inert M? Xax bonds with an intramolecular formation of a X4 fragment prior to the elimination of X2.  相似文献   

5.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

6.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster.  相似文献   

7.
The black crystal of (NH4)[Mo2(S2)6]* 8/3 H2O belongs to the orthorhombic system, space group D32-P22121, with a = 12.064(6), b = 12.534(4), c = 19.558(9)Å, V =2957(3)Å3, Z = 4 and Dc = 2.23g.cm?3. The intensity data were collected on a Syntex R3 four-circle diffractometer. The structure was solved by Patterson method and direct method, the light atoms (except H atoms) were obtained from ΔF syntheses. The structure was refined by least-squares with anisotropic thermal parameters. The values of R and Rw were 0.092 and 0.072 respectively. The crystal structure contains discrete dimeric cluster [Mo2(S2)6]2? ions, NH4+ cations and H2O molecules. There are two crystallographically independent [Mo2S2)6]2? ions in the crystal, one locates on general position [Figure 1(a)], the other locates on two-fold axis [Figure 1(b)]. It contains one and a half [Mo2S2)6]2? ions in an asymmetric unit. In [Mo2S2)6]2? each Mo is coordinated side on by four S22? groups in a distorted dodecahedral arrangement, two of which are bridging and the other two are terminal. The Mo? S bond length is 2.441 Å (mean), and S? S is 2.049 Å (mean). The Mo? Mo distance is 2.784 Å (mean), which is to be regarded as a single bond length. The formal oxidation state of Mo is five, it is probably a mixed valence MoIV? MoVI, and so shows a remarkable deep colour.  相似文献   

8.
Dithiolylium Chlorooxomolybdates(V): Synthesis and Crystal Structure of (C3Cl3S2)[MoOCl4] and (C3Cl3S2)[Mo2O2Cl7] The reaction of 3, 4, 5‐Trichlor‐1, 2‐dithiolylium chloride with MoOCl3 in dichlormethane under solvothermal conditions at 65 °C simultaneously yields the green tetrachlorooxomolybdate(V) (C3Cl3S2)[MoOCl4] and the yellow‐brown heptachlorodioxodimolybdate(V) (C3Cl3S2)[Mo2O2Cl7]. The crystal structures of both compounds contain nearly planar (C3Cl3S2)+ ions with a S—S bond length of 203 pm. The discrete [MoOCl4] ion in the structure of (C3Cl3S2)[MoOCl4] has the shape of a square pyramid with the oxygen atom at the apex. The molybdenum atom is displaced by 58 pm from the basal plane towards the oxygen atom. The [Mo2O2Cl7] ion in the structure of (C3Cl3S2)[Mo2O2Cl7] has the form of a face‐sharing double octahedron. It is formally composed of a [MoOCl4] ion and a MoOCl3 molecule connected by one symmetrical and two unsymmetrical chloro bridges. The molybdenum atoms placed in the centers of such connected octahedra are 357 pm apart, indicating no Mo—Mo bond.  相似文献   

9.
Crystal structures of Cs4[Re6Te8(CN)6]·2H2O (1) and Ba2[Re6Te8(CN)6]· 12H2O (2) are determined. Crystals 1 are orthorhombic, a = 14,282(1), b = 12.910(1), c = 18.040(1) Å, Vcell = 3326.3(8) Å3, space group Pbcn, Z = 4, dcalc = 5.715 g/cm3, R(F) = 0.0482 for 3193 Fhkl > 4σ(F). Crystals 2 are triclinic, a = 9.671(3), b = 9.697(4), c = 11.039(4) Å, α = 89.86(3), β = 72.34(3), γ = 82.46(3)°, Vcell = 977.2(6) Å3, space group P1, Z = 1, dcalc = 4.733 g/cm3, R(F) = 0.0490 for 3226 Fhkl > 4σ(F). In both structures, the [Re6Te8(CN)6]4? anions form a distorted primitive cubic packing with distances between the centers 9.02-9.63 Å in 1 and 9.70-11.04 Å in 2. The Cs+ cations in 1 lie near the face centers of the cubes formed by the onions. In 2, cation pairs (Ba2+)2 bonded to two solvate water molecules are formed; the pairs lie at the centers of the anion cubes. In structures 1 and 2, there are shortened contacts between the tellurium atoms belonging to the neighboring anions (3.75-4.09 and 3.95-4.22 Å, respectively).  相似文献   

10.
A single MoFe3S4 cubane-like cluster compound has been synthesized through spontaneous self-assembly of simple inorganic salts with organosulfur ligand for the first time. (Et4N)-(MoFe3S4(Et2NCSS)5] CH3CN(1) is quite stable in air. The crystal of 1 is monoclinic with space group P2/c, a=22.897 (3)Å, b= 12.399 (2)Å, c=20.928 (4)Å, β=97.15 (1)°, and Z=4. A full matrix least-squares refinement with 6725 unique reflections for all nonhydrogen atoms gives R=0.068. The anion of 1 is the first isolated single MoFe3S4 cubane cluster with core oxidation state [MoFe3S4]4+. The distance between the two 6-coordinate metal atoms (Mo, Fe) is 2.624 Å, which is the shortest M-M' bond observed for Mo-Fe-S clusters so far and the only one shorter than similar distances in FeMo-cofactor. The bond orders of this anion were calculated by EHMO method and the results coincide with the general rule. The structural feature and the unusual stability of 1 can be attributed to the bidentate chelating effect of Et2NCSS-, which leads to high coordination of metal atoms and the various ligated types.  相似文献   

11.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

12.
The First Polyiodo Complex – Triethylsulfoniumtriiodomercurate(II)-tris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 After Raman spectroscopic investigation of the system HgI2/Et3SIx, x = 3, 5, 7, triethylsulfoniumtriiodomercuratetris(diiodine), (Et3S)[Hg2I6]1/2 · 3 I2 was synthesized by reacting of HgI2 and liquid Et3SI7. The compound crystallizes at room temperature triclinically in the space group P1 with a = 879.4(7), b = 1 209.1(5), c = 1 291.5(5) pm, α = 96.16(3)°, β = 103.82(6)°, γ = 99.05(5)° and Z = 2. The crystal structure is composed of disordered Et3S+ cations, the centrosymmetric complex anion [HgI2/2I2]22? and three connecting iodine molecules I2.  相似文献   

13.
The crystal structure of (Et4N)[(μ-H)Fe33-Se)(CO)9] is determined;the crystals are monoclinic, a = 11.172(2), b =32.332(5), c =13.552(3) ?, μ =91.86(2)‡, V cell =4893(2) ? 3, space group P21/n, Z =8, d calc =1.710 g/cm 3, CAD-4 diffractometer, MoKα radiation;the total number of data collected 4395,including 4086 independent reflections(Rint =0.0701), R(F) =0.0566, wR(F 2) =0.1202 for 1963 F hkl > 4Σ(F). The data were corrected for the 37.8% linear drop of intensities of the control reflections due to crystal decay. The Fe-H bond lengths are 1.5(1)-1.72(9) ?. As in the case of three-osmium clusters,the presence of the Μ-H ligand leads to a lengthening of the Fe-Fe bond by approximately 0.1 ? and to push-away of the equatorial carbonyl ligands leading to an increase in the FeFeC angle by approximately 5–10‡, whereas the axial CO and (Μ 3-Se) remain unchanged.  相似文献   

14.
Metal Sulfur Nitrogen Compounds. 20. Reaction Products of PdCl2 and Pd(CN)2 with S7NH. Preparation and Structure of the Complexes [Ph6P2N][Pd(S3N)(S5)] and X[Pd(S3N)(CN)2] X = [Me4N]+, [Ph4P]+ With PdCl2 and [Ph6P2N]OH S7NH forms the complex salt [Ph6P2N][Pd(S3N)(S5)], which could be isolated in two modifications (α- and β-form). The α-form is triclinic, a = 9.347(4), b = 14.410(8), c = 15.440(11) Å, α = 76.27°(5), β = 77.06°(4), γ = 76.61α(4), Z = 2, space group P1 . The β-form is orthorhombic, a = 9.333(2), b = 17.659(4), c = 23.950(6) Å, Z = 4. The structure of the metal complex is the same in the two modifications. One S3N? and one S52? are coordinate as chelate ligands to Pd. From S7NH, Pd(CN)2, and XOH X = [(CH3)4N]+ and [(C6H5)4P]+ the salts X[Pd(S3N)(CN)2] were formed. The (CH3)4N-salt is isomorphous with the analogous Ni compound described earlier, the (C6H5)4P-salt is triclinic, a = 9.372(4), b = 10.202(5), c = 13.638(6) Å, α = 86.36α(4), β = 85.66°(4), γ = 88.71°(4), Z = 2, space group P1 . One S3N? chelate ligand and two CN? ions are bound to Pd. In all these complexes the coordination of Pd is nearly square planar.  相似文献   

15.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

16.
Metal Sulfur-Nitrogen Compounds. 19. Novel Complexes of CuI with the S3N? Chelate Ligand. Preparation and Structure of [Ph4As][Cu(S3N)(CN)], [(Ph3P)2N][Cu(S3N)(S7N)], and [Ph4As]2[(S3N)Cu(S2O3)Cu(S3N)] In alkaline media S7NH reacts with Cu salts to yield different products. With Cu(CN) the ion [Cu(S3N)(CN)]? is formed, which was isolated as the [Ph4As]+ salt. The crystals are monoclinic, space group P21/c, a = 10.499(5), b = 13.418(6), c = 18.032(8) Å, β = 91.84°(3), Z = 4. Besides the known complex ions [Cu(S3N)2]? and [Cu(S3N)Cl]? still some more may be obtained when CuCl2 is reacted with S7NH: Under special conditions the S7N ring is partly preserved, and [Cu(S3N)(S7N)]? is formed. Its sparingly soluble [(Ph3P)2N]+ salt is monoclinic, space group P21/n, a = 9.335(6), b = 30.984(11), c = 15.108(8) Å, β = 102.87°(4), Z = 4. Using a longer reaction time a dinuclear complex [(S3N)Cu(S2O3)Cu(S3N)]? ? results from the reaction of CuCl2 with S7NH. The two Cu atoms are bridged by an S atom of the S2O3? ? anion. The [Ph4As]+ salt of the dinuclear complex anion is triclinic, space group P1 , a = 11.226(6), b = 12.423(6), c = 19.000(10) Å, β = 76.47°(4), β = 83.98°(4), γ = 84.71°(4), Z = 2. In all these compounds the coordination of CuI is trigonal-planar, the S3N? chelate group coordinates the Cu in the usual way by two S atoms.  相似文献   

17.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

18.
Metal Sulfur Nitrogen Compounds 18. Reaction Products of S7NH with Nickel and Copper Salts. Preparation and Structures of the Complexes [Ch34N][Ni(S3N)(CN)2], [(C6H5)4As][Cu(S3N)2], and [(C6H5)4AS][Cu(S3N)Cl]. In the presence of MOH (M = K, [(CH3)4N]), S7NH reacts with Ni(CN)2 to yield, besides the three-nuclear complex M[(S3NNi)3S2], the new mononuclear complex M[Ni(S3N)(CN)2]. The [(CH3)4N]+ salt is monoclinic, C2/m, a = 19.303(9), b =6.941(3), c=16.309(10) Å, β = 144.510(2), Z = 4. The [Ni(S3N)(CN)2]- anion is planar, Ni being coordinated by one S3N? chelate ligand and by two CN? ions. From the reaction of CuCI2, S7NH, and [Ph4As]OH result the salts [Ph4As][Cu(S3N)2] or [Ph4As][Cu(S3N)Cl], depending on the reaction conditions. [Ph4As][Cu(S3N)2] is triclinic, P&1macr;, a = 7.073(3), b = 11.742(4), c = 16.439(6) Å α = 91.08°(3), β = 99.01°(3), γ = 91.58°(3), Z = 2. Two S3N? chelate ligands coordinate to CuI in a distorted tetrahedral arrangement. [Ph4As][Cu(S3N)Cl] is monoclinic, C2/c, a = 17.174(6), b = 13.650(5), c = 21.783(5) Å β = 100.45°(2), Z = 8. CuI is coordinated by one S3N? chelate ligand and one C1?, resulting in a trigonal planar environment.  相似文献   

19.
Through the reactions of ferrous thiolates with tetrathiomolybdate, we discussed the reaction pathways and possible intermediates during the formation of double-cubane type Mo-Fe-S cluster compounds. We also reported the synthesis, crystal structure, IR and magnetic susceptibility measurements of the title compound 2. The crystal of 2 belongs to triclinic system, Mr = 2670.3; ; a = 12.755(4) Å, b = 13.076(3) Å, c = 20.576(4) Å; α = 80.00 (2)°, β = 81.39(2)°, γ = 61.51(2)°; V = 2966.3(14) Å3; Z = 1; Dc = 1.495 g/cm2. Final R factor is 0.077 for 4031 observed reflections. The compound was obtained through the reaction of (Et4N)2[Fe4(SPh)10] (1) with (Et4N)2MoS4 in acetonitrile solution. The structure of anion 2 is two cubane clusters bridged by a Fe(SPh)6 group. The Mo… Mo' distance of 7.188 Å is the longest among all double-cubane cluster compounds of known structures.  相似文献   

20.
Title compound, Mr =1273.16, was synthesized by a substitution reaction and its crystal is triclinic belonging to space group P1 with cell parameters: a =13.944(2), b =14.143(7), c =14.233(3) Å, α =77.35(3)°, β =69.94(2)°, γ =63.50(3)°, V=2351(1) Å3, Z=2, Dc =1.799g cm?2. Room temperature, graphite-filtered Mo Kα radiation (λ =0.71073Å) was used for data collection. μ =14.988 cm?1, F(000) =1280, R=0.051 for 7025 observed reflections. The crystal consists of decrete cluster molecules containing a cluster core [Mo23-S)]10+ with three μ-S, one μ-dtp(dtp =[S2P(OC2H5)]2-), three χ-dtp and one allylthioureo to form a local six-coordinated sphere around each Mo atom. The bonds of cluster skeleton [Mo3(μ3-S)(μ-S)3]4+, Mo? Mo 2.744~2.766, Mo—(μ2-S) 2.340~2.342 and Mo—(μ-S)2.272~2.296 Å, are comparable with those found in the related analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号