首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(3):778-786
NiCo2O4/CNT nanocomposite films were fabricated by in‐situ growing ultrafine NiCo2O4 nanoparticles on acid‐modified carbon nanotube (CNT) films. The effects of CNT‐film pretreatment were investigated thoroughly by various characterization outfits including Fourier Transform Infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, RTS‐9 four‐point probes resistivity measurement system, X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and CHI660D electrochemical workstation. These results suggested that carbon nanotubes were uniformly wrapped by NiCo2O4 nanoparticles forming a hierarchical core‐shell structure. And the crystallinity, conductivity of the CNTs and detail structure (both morphology and size) of the NiCo2O4 nanoparticles varied with prolonged acid treatment time which resulted in increased functional groups and defects on CNT films and further affected the electrochemical properties. The composite film composed of the CNT film pretreated by mixed acid for 12 h exhibited excellent electrochemical properties: 828 F/g at 1 A/g and 656 F/g at 20 A/g, and maintained over 99 % of its capacitance after 3000 cycles of charge/discharge at 5 A/g. Acid treatment for either too long or too short is detrimental to the electrochemical properties of the composite films. Such work should be of fundamental importance for tailoring electrochemical properties by elaborate design of acid treatment on CNTs.  相似文献   

2.
A ternary composite material based on Prussian blue, single‐walled carbon nanotubes and 1‐butyl‐3‐methylimidazolium hexafluorophosphate was prepared and tested for electrochemical detection of H2O2. The sensor allows amperometric detection of H2O2 at ?0.05 V, with a sensitivity of 137 mA M?1?cm?2. The nanocomposite provides a favorable microenvironment for immobilization of horseradish peroxidase (HRP). Determination of xenoestrogenic compounds was performed by enzymatic oxidation at the surface of modified screen printed biosensor in the presence of H2O2. The developed electrochemical biosensors exhibited high sensitivity, low detection limits, good operational and storage stability, for detection of 4‐t‐butylphenol, 4‐t‐octylphenol, 4‐n‐nonylphenol and 4‐n‐nonylphenol ethoxylate.  相似文献   

3.
Song Qu  Jilie Kong  Gang Chen 《Talanta》2007,71(3):1096-1102
An electrochemical sensing platform was developed based on the magnetic loading of carbon nanotube (CNT)/nano-Fe3O4 composite on electrodes. To demonstrate the concept, nano-Fe3O4 was deposited by the chemical coprecipitation of Fe2+ and Fe3+ in the presence of CNTs in an alkaline solution. The resulting magnetic nanocomposite brings new capabilities for electrochemical devices by combining the advantages of CNT and nano-Fe3O4 and provides an alternative way for loading CNT on electrodes. The fabrication and the performances of the magnetic nanocomposite modified electrodes have been described. Cyclic voltammetry (CV) and constant potential measurement indicated that the incorporated CNT exhibited higher electrocatalytic activity toward the redox processes of hydrogen peroxide. In addition, chitosan (CTS) has also been introduced into the bulk of the CNT/nano-Fe3O4 composite by coprecipitation to immobilize glucose oxidase (GOx) for sensing glucose. The marked electrocatalytic activity toward hydrogen peroxide permits effective low-potential amperometric biosensing of glucose, in connection with the incorporation of GOx into CNT/Fe3O4/CTS composite. The accelerated electron transfer is coupled with surface renewability. TEM images and XRDs offer insights into the nature of the magnetic composites. The concept of the magnetic loading of CNT nanocomposites indicates great promise for creating CNT-based biosensing devices and expands the scope of CNT-based electrochemical devices.  相似文献   

4.
The synthesis of NiO/NiCo2O4 nanoparticles by an eco-friendly, fast, simple and cost-effective approach employing Urtica extract is reported in this study. The NiO/NiCo2O4 nanocomposite were characterized using VSM, FTIR, XRD, and SEM techniques. Moreover, to construct a modified carbon paste electrode, NiO/NiCo2O4 were employed and this sensor was used for dopamine (DA) detection. Using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques, the electrochemical behavior of dopamine at the NiO/NiCo2O4/CPE was investigated. Analysis of dopamine, with a limit of detection (LOD) equal to 0.04 μM, in the concentration range of 0.1–100.0 μM, was facilitated by NiO/NiCo2O4/CPE. Moreover, the satisfactory selectivity for DA determination in the presence of uric acid (UA) and ascorbic acid (AA), was obtained. The suggested new sensor displayed a good reproducibility, sensitivity, and stability for determination of DA in drug and biological samples.  相似文献   

5.
Developing non‐noble‐metal electrocatalyst for non‐enzymatic H2O2 sensing is highly attractive. A facile, two‐step approach has been utilized for the synthesis of PBNCs/SnO2 QDs/RGO ternary nanocomposite. TEM, SEM, XPS, and XRD techniques were used to the characterize the structural and morphological properties of synthesized ternary nanocomposite. The synthesized ternary nanocomposite has been examined as an electrode material for the electrochemical detection of H2O2 using the Amperometry technique. Under optimum conditions, PBNCs/SnO2 QDs/RGO ternary nanocomposite performed very well in the electrocatalytic reduction of H2O2 with a linear dynamic range from 25–225 μM (R2=0.996) with a low detection limit of 71 nM (S/N=3). Compared to the recent literature, PBNCs/SnO2QDs/RGO ternary nanocomposite based modified electrode exhibit a wider linear dynamic range with a low detection limit. Furthermore, PBNCs/SnO2 QDs/RGO ternary nanocomposite based modified electrode showed an excellent anti‐interference ability against various common interfering agents. The practical applicability of this ternary nanocomposite based modified electrode was further extended to determine the H2O2 in tap water with acceptable recovery. The present performance of PBNCs/SnO2 QDs/RGO ternary nanocomposite material towards H2O2 sensing might widen its application for developing a new type of non‐noble metal‐based non‐enzymatic electrochemical biosensors.  相似文献   

6.
Ni/NiCo2O4电极的制备及其析氧反应性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备NiCo2O4尖晶石粉体, 然后以多孔Ni 为基体, 通过复合溶胶涂覆结合烧结制备Ni/NiCo2O4 涂层电极. 运用扫描电子显微镜(SEM)、能量色散谱(EDS)和X 射线衍射(XRD)表征粉体以及Ni/NiCo2O4涂层电极的组成和结构. 采用循环伏安(CV), 稳态极化(LSV), 电化学阻抗谱(EIS), 恒电位阶跃以及恒电位长时间电解研究涂层电极在5 mol·L-1 KOH溶液中的电催化析氧反应(OER). 结果表明: Ni/NiCo2O4涂层电极与多孔Ni 电极对比, 具有低的析氧过电位、高的比表面积和高的稳定性能; 其中比表面积增大了28.69倍,表观活化能在不同过电位分别降低了166.78和162.15 kJ·mol-1.  相似文献   

7.
The shape‐controlled synthesis of NiCo2O4 microstructures through a facile hydrothermal method and subsequent calcinations was explored. By employing CoSO4, NiSO4, and urea as the starting reactants, flower‐like NiCo2O4 microstructures were obtained at 100 °C after 5 h without the assistance of any additive and subsequent calcination at 300 °C for 2 h; dumbbell‐like NiCo2O4 microstructures were prepared at 150 °C after 5 h in the presence of trisodium citrate and subsequent calcination at 300 °C for 2 h. The as‐prepared NiCo2O4 microstructures were characterized by X‐ray powder diffraction, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and (high‐resolution) transmission electron microscopy. Both the flower‐like and dumbbell‐like NiCo2O4 microstructures could be used as electrode materials for supercapacitors, and they exhibited excellent electrochemical performance, including high specific capacitance, good rate capability, and excellent long‐term cycle stability. Simultaneously, the shape‐dependent electrochemical properties of the product were investigated.  相似文献   

8.
Nanostructured NiCo2O4 is directly grown on the surface of three‐dimensional graphene‐coated nickel foam (3D‐GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder‐free lithium‐ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder‐free electrode structures. The flower‐type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g?1 at 200 mA g?1) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet‐type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well‐preserved connection between the active materials and the current collector, a short lithium‐ion diffusion path, and fast electrolyte transfer in the binder‐free NiCo2O4‐coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder‐free NiCo2O4/3D‐GNF hybrid a potential material for commercial applications.  相似文献   

9.
A promising nickel cobaltite oxide (NiCo2O4) composite electrode material was successfully synthesized by a sol-gel method and followed by a simple sintering process. The microstructure and surface morphology of NiCo2O4 modified by hexadecyltrimethylammonium bromide (CTAB) and polyvinyl alcohol were physically characterized by powder X-ray diffraction and scanning electron microscopy. Meanwhile, electrochemical performance was widely investigated in 2 M KOH aqueous electrolyte using cyclic voltammetry, galvanostatic charge-discharge test, and electrochemical impedance spectroscopy. The results show that evident porous microstructure was successfully fabricated by CTAB. The NiCo2O4 controlled by CTAB exhibited highly specific capacitance of 1,440 F?g?1 at a current density of 5 mA?cm?2. Remarkably, it still displays desirable cycle retention of 94.1 % over 1,000 cycle numbers at a current density of 20 mA?cm?2. The excellent electrochemical performance suggests its potential application in electrode material for electrochemical capacitors.  相似文献   

10.
《化学:亚洲杂志》2017,12(18):2426-2433
Exploring non‐precious‐metal‐based oxygen reduction reaction (ORR) electrocatalysts featuring high efficiency, low cost, and environmental friendliness is of great importance for the broad applications of fuel cells and metal–air batteries. In this work, ultrathin NiCo2O4 nanosheets deposited on 1D SnO2 nanotubes (SNT) were successfully fabricated through a productive electrospinning technique followed by a sintering and low‐temperature coprecipitation strategy. This hierarchically engineered architecture has ultrathin NiCo2O4 nanosheets uniformly and fully erected on both walls of tubular SNTs, which results in improved electrochemical activity as an ORR catalyst, in terms of positive onset potential and high current density, as well as superior tolerance to crossover effects and long‐term durability with respect to the commercial Pt/C catalyst. The excellent performance of SNT@NiCo2O4 composites may originate from their rationally designed hierarchical tubular nanostructure with completely exposed active sites and interconnected 1D networks for efficient electron and electrolyte transfer; this makes these composite nanotubes promising candidates to replace platinum‐based catalysts for practical fuel cell and metal–air battery applications.  相似文献   

11.
以浮动催化化学气相沉积致密超薄碳纳米管薄膜(CNTF)为基体,通过两步酸处理使薄膜内制备的碳纳米管(CNT)分开并赋予其活性官能团,CNTF由超疏水转变为超亲水性,然后在CNT表面生长均匀的前驱体包覆层,离子进入超亲水薄膜内部确保了高负载量,最后进行液相硫化制得NiCo_2S_4@碳纳米管构筑柔性薄膜(NiCo_2S_4@CNTF)电极。利用扫描电子显微镜、X射线衍射等对产物进行了表征,证明优化产物为NiCo_2S_4均匀包覆多壁CNT构筑而成的三维网状柔性复合薄膜,单根CNT的表面是NiCo_2S_4纳米粒子构成、厚度约70 nm的粗糙包覆层。该复合薄膜比电容达到270.3 mF·cm-2,即使在高电流密度2.5 mA·cm-2下充放电循环10 000次后仍保持很好的可逆性,电容保持率达93%,库伦效率持续稳定在92%附近;重复大变形(弯曲、折叠、卷曲)后能保持结构完整性和性能稳定性。同时,探讨了电化学性能与结构间的关系,并揭示了性能增强的内在机理。  相似文献   

12.
Lithium borohydride (LiBH4) with a theoretical hydrogen storage capacity of 18.5 wt % has attracted intense interest as a high‐density hydrogen storage material. However, high dehydrogenation temperatures and limited kinetics restrict its practical applications. In this study, mesoporous nickel‐ and cobalt‐based oxide nanorods (NiCo2O4, Co3O4 and NiO) were synthesized in a controlled manner by using a hydrothermal method and then mixed with LiBH4 by ball milling. It is found that the dehydrogenation properties of LiBH4 are remarkably enhanced by doping the as‐synthesized metal oxide nanorods. When the mass ratio of LiBH4 and oxides is 1:1, the NiCo2O4 nanorods display the best catalytic performance owing to the mesoporous rod‐like structure and synergistic effect of nickel and cobalt active species. The initial hydrogen desorption temperature of the LiBH4‐NiCo2O4 composite decreases to 80 °C, which is 220 °C lower than that of pure LiBH4, and 16.1 wt % H2 is released at 500 °C for the LiBH4‐NiCo2O4 composite. Meanwhile, the composite also exhibits superior dehydrogenation kinetics, which liberates 5.7 wt % H2 within 60 s and a total of 12 wt % H2 after 5 h at 400 °C. In comparison, pure LiBH4 releases only 5.3 wt % H2 under the same conditions.  相似文献   

13.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

15.
通过直接退火静电纺丝前驱样品以及调节升温速率最终得到了钴酸镍(NiCo2O4)微米带. 通过X射线衍射、扫描电镜、振动样品磁强计以及电化学工作站等分析手段对钴酸镍微米带的晶体结构、形貌、磁学性能以及电化学性能进行了研究. 结果显示, 以1℃·min-1的升温速率得到的NiCo2O4微米带属于立方尖晶石结构, 高温处理后仍能保持一维结构. 室温磁化结果显示制备的NiCo2O4微米带具有超顺磁性, 在10 kOe时磁化强度为6.35 emu·g-1. 此外, 电化学测试结果显示, NiCo2O4微米带的电容特性是典型的赝电容, 并且比电容随着放电电流密度的增加而减小.  相似文献   

16.
Non‐enzymatic glucose sensor is greatly expected to take over its enzymatic counterpart in the future. In this paper, we reported on a facile strategy to construct a non‐enzymatic glucose sensor by use of NiCo2O4 hollow nanocages (NiCo2O4 HNCs) as catalyst, which was derived from Co‐based zeolite imidazole frame (ZIF‐67). The NiCo2O4 HNCs modified glassy carbon electrode (NiCo2O4 HNCs/GCE), the key component of the glucose sensor, showed highly electrochemical catalytic activity towards the oxidation of glucose in alkaline media. As a result, the proposed non‐enzymatic glucose sensor afforded excellent analytical performances assessed with the aid of cyclic voltammetry and amperometry (i–t). A wide linear range spanning from 0.18 μΜ to 5.1 mM was achieved at the NiCo2O4 HNCs/GCE with a high sensitivity of 1306 μA mM?1 cm?2 and a fast response time of 1 s. The calculated limit of detection (LOD) of the sensor was as low as 27 nM (S/N=3). Furthermore, it was demonstrated that the non‐enzymatic glucose sensor showed considerable anti‐interference ability and excellent stability. The practical application of the sensor was also evaluated by determination of glucose levels in real serum samples.  相似文献   

17.
We report the synthesis of NiCo2O4/reduced graphene oxide (NiCo2O4/rGO) hybrid hierarchical structures with unique nanonet and microsphere morphologies by organic polar solvent-assisted solvothermal method. The electrocatalytic oxygen evolution reaction (OER) activity of these materials is studied by cyclic voltammetry, linear sweep voltammetry and chronoamperometry methods in O2-saturated 0.1 M KOH solution. The NiCo2O4/rGO hybrid nanocomposite materials are found to be highly active electrocatalysts for OER at lower overpotentials. The nanonet and microsphere-like NiCo2O4/rGO catalysts require overpotentials of 0.450 and 0.530 V at a current density of 10 mA cm?2, and their corresponding Tafel slopes are 53 and 62 mV dec?1, which are much lower than values reported for non-precious electrocatalysts. Further, both NiCo2O4/rGO catalysts show good catalytic stability with current retention more than 92 % over long period of 15,000 s determined by chronoampirometry and at the end of 1000th cycle determined by linear sweep voltammetry. The enhanced OER activity of nanostructured NiCo2O4/rGO hybrid catalysts is attributed to synergistic interaction between rGO and NiCo2O4, which seems to be essential for maintaining the large contact area at the electrode-electrolyte interface, better mass, and charge transport and to minimize the aggregation of NiCo2O4 nanoparticles.  相似文献   

18.
In this contribution, a novel label-free electrochemical biosensor for diclofenac (DCF) detection was developed using the unique properties of acid-oxidized carbon nanotubes (CNT), graphene oxide (GO), and Fe3O4 magnetic nanomaterials. The GO sheets and CNT were interlinked by ultrafine Fe3O4 nanoparticles forming three-dimensional (3D) architectures. The characterization of the nanocomposite was studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and wavelength-dispersive X-ray (WDX) spectroscopy. Initially, aminated detection probe (aptamer) was surface-confined on the CNT/GO/Fe3O4 nanocomposite via the covalent amide bonds formed by the carboxyl groups on the CNT/GO and the amino groups on the oligonucleotides at the 5′ end. Our constructed folding-based electrochemical sensor was used for detection of target molecule utilizing structure-switching aptamers. Signaling arose from changes in electron transfer efficiency upon target-induced changes in the conformation of the aptamer probe. These changes were readily monitored using differential pulse voltammetry technique. This sensor exhibited binding affinities ranging from 100 to 1300 pM with a low detection limit of 33 pM.  相似文献   

19.
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium‐ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mA h g?1 at a current density of 100 mA g?1, good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 F g?1 at a current density of 20 A g?1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode–electrolyte contact area and facilitate rapid ion transport.  相似文献   

20.
The design and synthesis of new materials/structures for high-performance electrochemical capacitors (ECs) is an ongoing challenge. Herein, a hierarchical porous NiCo2O4 microbox superstructure made of low-dimensional substructures was reported. The as-prepared NiCo2O4 microboxes are constructed by 2D nanosheets building units, which are futher woven by 0D nanoparticles and 1D nanowires. Such microbox superstructures combine the merits of all material dimensions in electrochemical capacitors, such as high porosity, sufficient active sites, and fast mass and charge transport. Benefiting from the structural advantages, the resultant NiCo2O4 microbox electrode exhibits ultra-high capacitor performance, i.e., the initial capacitance of 1820 F · g–1 and 96.6 % capacitance retention after 4000 cycles at 5 A · g–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号