首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel π‐conjugated polymers ( 8 – 10 ) were prepared by the palladium‐catalyzed Sonogashira coupling reaction of three kinds of phosphole‐ring‐containing monomers with 2,5‐dihexyloxyl‐1,4‐diethynylbenzene. The obtained polymers ( 8 – 10 ) were regioregulated with the 2,5‐substituted phosphole ring in the polymer main chain and characterized with 1H, 13C, and 31P NMR and FTIR. Polymers 8 – 10 were found to have an extended π‐conjugated system according to the results of UV–vis absorption spectra. In the fluorescence emission spectra of 8 – 10 , moderate emission peaks were observed in the visible blue‐to‐green region. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2867–2875, 2007  相似文献   

2.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

3.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

4.
In this study the scope of the 1,1‐carboboration reaction was extended to the preparation of mixed heterole‐based conjugated π‐systems. Two arylbis(alkynyl)phosphane starting materials 2 were synthesized bearing two thiophene isomers at the alkyne units and the bulky tipp‐substituent (tipp=2,4,6‐triisopropylphenyl) at the phosphorous atom. The bis(thienylethynyl)phosphanes 2 were converted into the corresponding 2,5‐thienyl‐substituted 3‐borylphospholes 4 in a double 1,1‐carboboration reaction sequence employing the strongly electrophilic B(C6F5)3 reagent under mild reaction conditions. Subsequent Suzuki–Miyaura type cross‐coupling yielded the corresponding 3‐phenylphospholes 7 in a one‐pot procedure from phosphanes 2 in high yields. Phospholes 7 were converted into the respective phosphole oxides 8 . A photophysical characterization of derivatives 7 and 8 was carried out. The results presented here demonstrate the suitability of the 1,1‐carboboration reaction for the preparation of phosphole‐/thiophene‐based, light‐emitting systems.  相似文献   

5.
Here, we report a new carboxylic‐functionalized water soluble π‐conjugated polymer for selective detection of highly toxic Hg2+ in neutral pH condition. carboxylic‐functionalized thiophene containing oligophenylenevinylene was synthesized and polymerized under oxidative route to obtain water soluble polymer. Free carboxylic groups present in the π‐conjugated materials provide opportunity to use pH as external stimuli for studying secondary interaction such as hydrogen bonding and aromatic π‐stacking of the chromophores. The pH changes strongly influence on the molecular interactions in the monomer, whereas the long chain polymer was less disturbed. The polymer showed high selectivity for detecting Hg2+ ions compared with any other transition metal ions in water. The detection efficiency of the polymer was found almost 40 times higher than that of its monomeric unit. Stern‐Volmer constant for the Hg2+ ion sensing was determined through concentration dependent studies as 6.4 × 105 M?1. The carboxylic‐functionalized polymer showed reversibility in the metal‐ion detecting capabilities which was further investigated by NaCl complexation with Hg2+ complex. Both funneling of excitation energy to the Hg2+ center and also excitation energy migration through chain π‐conjugated backbone were correlated to the superior sensing characteristics of the polymer compared to its monomeric counterpart. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5144–5157, 2009  相似文献   

6.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

7.
Phosphole is a chemically tunable heterole, and its π‐conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure–property relationships of π‐conjugated phosphole derivatives made by my research group. Thiophene–phosphole–styrene, phosphole–acetylene–arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole–heterole π systems are synthesized using titanacycle‐mediated metathesis and palladium‐catalyzed cross‐coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene–phosphole copolymers, acenaphtho[c]phospholes, and amine–terthiophene–phosphole donor–π–acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus‐containing organic materials for molecular electronics.  相似文献   

8.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
The effects of solution processing and thermal annealing on thin film morphology and crystalline structures of regioregular poly(3‐hexyl thiophene) (RR P3HT) are studied in terms of molecular weight (Mw). Using grazing‐incidence X‐ray diffraction, π‐conjugated planes in drop‐cast films from chloroform solutions are found to be preferentially oriented parallel to the substrates regardless of Mw. However, the mesoscale nanocrystalline morphology of the drop‐cast films is significantly affected by Mw, exhibiting a distinctive morphological transition from short nanorods to long nanofibrils above a critical number‐averaged Mw (~ 3.6 kDa). This is probably due to the change in a conformation change from an extended‐chain to a folded‐chain, as Mw of RR P3HT increases. In contrast, spin‐casting of high Mw RR P3HT produces less ordered films with a lower crystallinity and mixed parallel/perpendicular orientations of π‐conjugated planes. The crystallinity and parallel π‐conjugated orientation of RR P3HT in spin‐cast films could be improved by thermal treatments at high‐temperatures either (1) above the glass transition temperature or (2) above the melting temperature of RR 3PHT followed by recrystallization upon cooling under vacuum. However, the charge mobility of the spin‐cast films for a field‐effect transistor application is still lower than that of the drop‐cast films. This would be attributed to the chain oxidation and the development of distinct grain boundaries between RR P3HT nanofibrils during the thermal treatments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1303–1312, 2007  相似文献   

10.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

11.
A divergent method for the synthesis of α,α′‐diarylacenaphtho[1,2‐c]phosphole P‐oxides has been established; α,α′‐dibromoacenaphtho[c]phosphole P‐oxide, which was prepared through a TiII‐mediated cyclization of 1,8‐bis(trimethylsilylethynyl)naphthalene, underwent a Stille coupling with three different kinds of aryltributylstannanes to afford the α,α′‐diarylacenaphtho[c]phosphole P‐oxides in moderate to good yields. X‐ray crystallographic analyses and UV/Vis absorption/fluorescence measurements have revealed that the degree of π‐conjugation, the packing motif, the electron‐accepting ability, and the thermal stability of the acenaphtho[c]phosphole π‐systems are finely tunable with the α‐aryl substituents. All the P?O and P?S derivatives exhibited high stability in their electrochemically reduced state. To use this class of arene‐fused phosphole π‐systems as n‐type semiconducting materials, we evaluated device performances of the bulk heterojunction organic photovoltaics (OPV) that consist of poly(3‐hexylthiophene), an indene‐C70 bisadduct, and a cathode buffer layer. The insertion of the diarylacenaphtho[c]phosphole P‐oxides as the buffer layer was found to improve the power conversion efficiency of the polymer‐based OPV devices.  相似文献   

12.
A series of donor‐acceptor low‐bandgap conjugated polymers, that is, HThmBT (m = 3, 6, 9, 12, 15), composed of regioregular 3‐hexylthiophene segments and 2,1,3‐benzothiadiazole units, were synthesized through the Stille coupling polymerization to optimize the π‐conjugation length of the polymer and the intramolecular charge transfer (ICT) effect in the polymer backbone. The polymers had relatively low optical bandgaps ranging from 1.6 to 1.72 eV. Among these polymers, HTh6BT exhibited the best device performance with a power conversion efficiency (PCE) of 1.6%. Moreover, despite being based on thiophene, HTh6BT exhibited a high‐open circuit voltage (VOC) of over 0.8 V because of its low high occupied molecular orbital (HOMO) energy level. These results provided an effective strategy for designing and synthesizing low‐bandgap conjugated polymers with broad absorption ranges and well‐balanced energy levels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A conjugated main‐chain copolymer ( PBT ) consisting of bithiazole, dithieno[3,2‐b:2′,3′‐d]pyrroles (DTP), and pendent melamine units was synthesized by Stille polymerization, which can be hydrogen‐bonded (H‐bonded) with proper molar amounts of bi‐functional π‐conjugated crosslinker F (i.e., two uracil motifs covalently attached to a fluorene core through triple bonds symmetrically) to develop a novel supramolecular polymer network ( PBT/F ). The effects of multiple H‐bonds on light harvesting capabilities, HOMO levels, and photovoltaic properties of polymer PBT and H‐bonded polymer network PBT/F are investigated. The formation of supramolecular polymer network ( PBT/F ) between PBT and F was confirmed by FTIR and XRD measurements. Because of the stronger light absorption, lower HOMO level, and higher crystallinity of H‐bonded polymer network PBT/F , the solar cell device containing PBT/F showed better photovoltaic properties than that containing polymer PBT . The preliminary results show that the solar cell device containing 1:1 weight ratio of PBT/F and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) offers the best power conversion efficiency (PCE) value of 0.86% with a short‐circuit current density (Jsc) of 4.97 mA/cm2, an open circuit voltage (Voc) of 0.55 V, and a fill factor (FF) of 31.5%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A versatile phosphorus‐containing π‐conjugated building block, thieno[3,4‐c]phosphole‐4,6‐dione (TPHODO), has been developed. The utility of this simple but hitherto unknown building block has been demonstrated by preparing novel functional organophosphorus compounds and bandgap‐tunable conjugated polymers.  相似文献   

15.
Three donor–acceptor type π‐conjugated monomers containing 2, 1, 3‐benzothiadiazole (Tz) as the acceptor unit and different thiophene derivatives (thiophene, 3,4‐ethylenedioxythiophene, and thieno[3,2‐b]thiophene) as the donor units have been synthesized via Stille coupling reaction. The corresponding polymers are electrochemically deposited onto FTO glass by cyclic voltammetry (CV). The maximum absorption wavelength of the neutral polymers varies with the electron‐rich character of incorporated thiophene moieties, giving rise to tunable colors. In addition, the prepared polymer films demonstrate reasonable transmittance modulation, fast switching rate, high color efficiency and good stability, which meet the requirements of smart windows and electrochromic display applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2239–2246  相似文献   

16.
PS, I love you! Novel mixed phosphole/thiophene π‐conjugated systems were synthesized and their electronic properties have been studied both experimentally by UV/Vis spectroscopy and electrochemistry and by theoretical calculations. Exploiting the chemistry of both P‐ and S‐heteroles allows the generation of a diverse range of novel ring‐fused benzophosphole–thiophene derivatives.

  相似文献   


17.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

18.
A new series of symmetrically substituted bulky PPV‐copolymers based on poly(bis‐2,5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene) ( BEH‐PPV ) bearing tricyclodecane (TCD) pendants were synthesized to study the effect of chain aggregation in the π‐conjugated polymer backbone. The composition of the copolymers was varied up to 100 mol % and the structures of the copolymer were confirmed by NMR and FTIR. The molecular weights of the copolymers were obtained as Mw = 11,500–1,78,800 depending on the TCD‐incorporation in BEH‐PPV. The origin of the π‐aggregation was investigated using mixture of solvents (polar or nonpolar) or temperature as external stimuli. Absorption, photoluminescence, and time‐resolved fluorescence decay techniques were employed as tools to trace molecular aggregation in solution and solid state. The TCD‐substituted bulky copolymers showed almost twice the enhancement in photoluminescence compared with that of BEH‐PPV . Solvent‐induced aggregation studies of copolymers revealed the existence of strong molecular aggregation in BEH‐PPV compared with that of bulky copolymers. Variable temperature studies further evidence for the reversibility of molecular aggregation on heating/cooling cycles and showed isosbetic points with respect to free and aggregated polymer chains. Time‐resolved fluorescent studies confirmed the existence of free and aggregated π‐conjugated species with a life time of 0.1 to 1.0 ns. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2631–2646, 2009  相似文献   

19.
The incorporation of heavier Group 14 element heteroles into semiconducting polymers leads to unusual optoelectronic properties. However, polymers containing stannoles have not been accessible to date. We report a synthetic route to a well‐defined, stannole‐containing polymer, the first example of this class of π‐conjugated polymers. This route was made possible by developing difunctionalized stannole monomers and highly tin‐selective Stille coupling reactions that leave the tin in the stannole untouched. Compared to poly(3‐n‐hexylthiophene), the resulting polymer displays a remarkable bathochromic shift in its absorption.  相似文献   

20.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号