首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Model copolymers of poly(butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS‐b‐PB, were synthesized by sequential anionic polymerization (high vacuum techniques) of 1,3‐butadiene and hexamethylciclotrisiloxane (D3) on sec‐BuLi followed by chlorosilane‐coupling chemistry. The synthesized copolymers were characterized by nuclear magnetic resonance (1H NMR), size‐exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). SEC and 1H NMR results showed low polydispersity indexes (Mw/Mn) and variable siloxane compositions, whereas DSC and TGA experiments indicated that the thermal stability of the triblock copolymers depends on the PDMS composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2726–2733, 2007  相似文献   

2.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   

4.
《先进技术聚合物》2018,29(6):1603-1612
In this study, polystyrene (PS) was melt blended with different amounts of poly1‐hexene (PH) and poly(1‐hexene‐co‐hexadiene) (COPOLY) and the blends were compared with conventional PS/polybutadiene (PS/PB) one. Scanning electron microscope revealed that the dispersion of PH and COPOLY in PS matrix was more uniform with the appearance of small particles in PS matrix; however, in the case of PS/PB blends, the fracture surface showed nonhomogenous morphology with the appearance of bigger rubber particles. Based on Differential Scanning Calorimetry (DSC) and dynamic mechanical thermal analysis results, Tg of the blends decreased in comparison with it in neat PS. Impact strength of PS/PH and PS/COPOLY blends was considerably higher than that in PS/PB and significantly higher than the value for neat PS. Tensile test showed substantial improvement in stress at yield and better elongation at break for COPOLY containing blend than the samples containing PH and PB rubbers. Also, blending of PS with 10% of the rubbers was considered in the presence of dicumylperoxide as a probable grafting/cross‐linking agent to produce XPS/COPOLY10 and XPS/PB10 samples, respectively. IR results of the nonsoluble solvent extracted gel showed that COPOLY and PB were grafted to PS matrix during melt blending, which caused higher impact strength in the related samples.  相似文献   

5.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

6.
《先进技术聚合物》2018,29(10):2601-2611
Biomaterials and their host organism's quintessential place of interaction are the surfaces of materials, as transportation of liquids within microchannels requires hydrophilic surfaces. Modifying the hydrophobic surface of polydimethylsiloxane (PDMS) into a hydrophilic one which can be used in biomaterials remains a big challenge. Herein, PDMS‐hydroxyethylmethacrylate (HEMA) films were prepared by the condensation of PDMS using isophorone diisocyanate as a cross‐linker, followed by the incorporation of HEMA via radical copolymerization. The as‐prepared PDMS‐HEMA films were thereafter hydrophilized via physical treatment with heptamethyltrisiloxane. The surface properties of the obtained PDMS‐HEMA films were characterized in wettability, morphology, topography, swelling, mechanical properties, and protein adsorption. Compared to pristine PDMS‐HEMA as control, the surface wettability, roughness, and protein adsorption of the hydrophilized PDMS‐HEMA films were significantly improved while the films also exhibited excellent optical properties. However, the improvement of the swelling properties remains insignificant, indicating that the interior morphology was still based on the hydrophobic siloxane PDMS. The long‐term hydrophilicity was considered good as no significant hydrophobic recovery was noticeable in a period of 5 months after treatment.  相似文献   

7.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

8.
Coating of silica nanoparticles by biocompatible and biodegradable polymers of ε‐caprolactone and L ‐lactide was performed in situ by ring‐opening polymerization of the cyclic monomers with aluminum, yttrium, and tin alkoxides as catalysts. Hydroxyl groups were introduced on the silica surface by grafting of a prehydrolyzed 3‐glycidoxypropyl trimethoxysilane to initiate a catalytic polymerization in the presence of metal alkoxides. In this manner, free polymer chains were formed to grafted ones, and the graft density was controlled by the nature of the metal and the alcohol‐to‐metal ratio. The grafting reaction was extensively characterized by spectroscopic techniques and quantified. Nanocomposites containing up to 96% of polymer were obtained by this technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1976–1984, 2004  相似文献   

9.
Model diblock copolymers of poly(1,4‐butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS, were synthesized by the sequential anionic polymerization (high vacuum techniques) of butadiene and hexamethylciclotrisiloxane (D3) in the presence of sec‐BuLi. By homogeneous hydrogenation of PB‐b‐PDMS, the corresponding poly(ethylene) and poly(dimethylsiloxane) block copolymers, PE‐b‐PDMS, were obtained. The synthesized block copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR), size‐exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and rheology. SEC combined with 1H NMR analysis indicates that the polydispersity index of the samples (Mw/Mn) is low, and that the chemical composition of the copolymers varies from low to medium PDMS content. According to DSC and TGA experiments, the thermal stability of these block copolymers depends on the PDMS content, whereas TEM analysis reveals ordered arrangements of the microphases. The morphologies observed vary from spherical and cylindrical to lamellar domains. This ordered state (even at high temperatures) was further confirmed by small‐amplitude oscillatory shear flow tests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1579–1590, 2006  相似文献   

10.
Chitosan‐graft‐poly(ϵ‐caprolactone) was prepared via the ring‐opening graft polymerization of ϵ‐caprolactone (CL) through chitosan with 4‐dimethylaminopyridine as a catalyst and water as a swelling agent. The graft content of PCL within the graft copolymer was adjusted by the feed ratio of CL to chitosan, and the highest grafting concentration of PCL was up to about 400%. Fourier transform infrared, 1H NMR, and two‐dimensional heteronuclear single quantum coherence analyses indicated that the amino group (NH2 CH‐2) of chitosan initiated the graft polymerization of CL through the backbone of chitosan, and the hydroxyl group (HO CH2–6) of chitosan did not participate in initiating the graft polymerization. The percentage of amino groups initiating the graft polymerization decreased with an increasing molar ratio of CL to chitosan in the feed, and this was attributed to the fact that the graft polymerization system increasingly became heterogeneous with an increasing feed ratio of CL to chitosan. The physical properties of the graft copolymers were characterized by thermogravimetric analysis and wide‐angle X‐ray diffraction, respectively. These suggested that the introduction of PCL grafts through the chitosan backbone would to some extent destroy the crystalline structure of chitosan, and the PCL grafts existed in an amorphous structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5353–5361, 2006  相似文献   

11.
Porous silica coated by a highly hydrophilic and nonionic tentacle‐type polymeric layer was synthesized by free radical “grafting from” polymerization of N‐[2‐hydroxy‐1,1‐bis(hydroxymethyl)ethyl]‐2‐propenamide (TRIS‐acrylamide) in partly aqueous solutions. The radical initiator sites were incorporated on the silica surfaces via a two‐step reaction comprising thionyl chloride activation and subsequent reaction with tert‐butyl hydroperoxide. The surface‐bound tert‐butylperoxy groups were then used as thermally triggered initiators for graft polymerization of TRIS‐acrylamide. The synthesized materials were characterized by diffusive reflectance Fourier transform infrared specotroscopy, X‐ray photoelectron spectroscopy, and CHN elemental analysis. Photon correlation spectroscopy was used to determine changes in ζ‐potentials resulting from grafting, 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS‐NMR) spectroscopy was used to assess the ratio of silanol to siloxane groups in the substrate and the grafted material, and the changes in surface area and mesopore distribution were determined by nitrogen cryosorption. Chromatographic evaluation in hydrophilic interaction chromatography (HILIC) mode showed that the materials were suitable for use as stationary phases, featuring good separation efficiency, a comparatively high retention, and a selectivity that differed from most commercially available HILIC phases. A comparison of this neutral phase with a previously reported N‐(2‐hydroxypropyl)‐linked TRIS‐type hydrophilic tentacle phase with weak anion exchange functionality revealed substantial differences in retention patterns.  相似文献   

12.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

13.
New graft copolymer was prepared by incorporating tris(2‐methoxyethoxy)vinylsilane (TMEVS) on ethylene‐propylene‐diene terpolymer (EPDM) by using dicumyl peroxide (DCP) as initiator, in Haake Rheocord 90 torque rheometer. The effect of EPDM concentration, TMEVS concentration, reaction time, reaction temperature and initiator concentration on the graft co polymerization was studied. The grafting efficiency of TMEVS on EPDM was confirmed by Fourier Transform infrared (FT‐IR) spectroscopy. The grafting efficiency increased with increase in the silane concentration upto 6% by weight. The grafting efficiency decreased beyond 6% by weight due to homopolymerization of TMEVS and non‐availability of carbon–carbon double bond in the EPDM terpolymer. The thermal properties of peroxide cured EPDM and hot water cured EPDM‐g‐TMEVS were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. The results show thermal properties like degradation tempertature and glass transition temperature of the EPDM‐g‐TMEVS were increased due to introduction of TMEVS on to EPDM terpolymer as well as the formation of thermally stable three‐dimensional network. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   

15.
Polybutadiene (PB), polyisoprene (PI), and styrene–butadiene rubber/organic montmorillonite (OMMT) nanocomposites (NCs) were prepared by in situ anionic intercalation polymerization. The intercalation structure, chemical constitution, and morphology of the rubber/OMMT NCs were characterized with X‐ray diffraction, H NMR spectroscopy, and transmission electron microscopy; the thermal and dynamic mechanical properties of the rubber/OMMT NCs were characterized with differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The mechanical properties of PB/OMMT NC were also tested. The results showed that a certain extent of exfoliated rubber/OMMT could be prepared by anionic in situ intercalation polymerization. The incorporation of OMMT obviously changed the microstructure content of PB and PI: the concentrations of the 1,2‐unit, 3,4‐unit, and trans‐1,4‐unit increased dramatically with an increasing concentration of OMMT, and the concentration of the cis‐1,4 structure decreased. The addition of OMMT‐DK1B and OMMT‐DK4 had little effect on the molecular weight and molecular weight distribution, but the addition of OMMT‐DK1 reduced the molecular weight of rubber, and the molecular weight distribution became broad. The glass‐transition temperature, weight‐loss temperature, storage modulus, and loss modulus of the NCs evidently increased, but tan δ decreased. OMMT apparently enhanced the rubber matrix; for example, the breaking strength and hardness of PB/OMMT NC crosslinked rubber increased greatly, but the tear strength and permanent deformation did not change much. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1344–1353, 2005  相似文献   

16.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

17.
This work focuses on the effect of electron beam irradiation on the physico‐mechanical, dynamic mechanical and dielectric properties of blends based on ethylene octene copolymer (EOC) and poly dimethyl siloxane (PDMS) rubber. It is found that electron beam irradiation caused considerable improvement in the physico‐mechanical properties; the tensile strength was enhanced by nearly 35% for 70:30 EOC:PDMS blend. Phase morphology of the blends analyzed before irradiation by scanning electron microscopy (SEM) exhibited droplet/matrix morphology with sizes of the PDMS rubber domain varying from 0.55 µm to 0.47 µm as the amount of PDMS rubber decreased from 30 wt% to 10 wt%. This reduction in the PDMS rubber domain has been correlated with the physico‐mechanical properties of the blends. Further, the dynamic mechanical properties and creep behavior of these EOC:PDMS blends before and after irradiation has been studied. It is inferred that the 70:30 blend after radiation crosslinking shows a 17% decrease in the creep compliance, i.e. higher creep resistance compared to neat blends. All the radiation crosslinked blends exhibited lower dielectric constant, lower dielectric loss and higher electrical resistivity as compared to the virgin blends which makes it suitable for cable insulating application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Differential scanning calorimetry was used to investigate the isothermal crystallization, subsequent melting behavior, and nonisothermal crystallization of syndiotactic 1,2‐polybutadiene (st‐1,2‐PB) produced with an iron‐based catalyst system. The isothermal crystallization of two fractions was analyzed according to the Avrami equation. The morphology of the crystallite was observed with polarized optical microscopy. Double melting peaks were observed for the samples isothermally crystallized at 125–155 °C. The low‐temperature melting peak, which appeared approximately 5 °C above the crystallization temperature, was attributed to the melting of imperfect crystals formed by the less stereoregular fraction. The high‐temperature melting peak was associated with the melting of perfect crystals formed by the stereoregular fraction. With the Hoffman–Weeks approach, the value of the equilibrium melting temperature was derived. During the nonisothermal crystallization, the Ozawa method was limited in obtaining the kinetic parameters of st‐1,2‐PB. A new method that combined the Ozawa method and the Avrami method was employed to analyze the nonisothermal crystallization of st‐1,2‐PB. The activation energies of crystallization under nonisothermal conditions were calculated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 553–561, 2005  相似文献   

19.
Poly(aramid silicone) (PAS) multiblock copolymers were synthesized by the low‐temperature solution polycondensation of isophthaloyl dichloride (IPC) and two diamines, diamino poly(dimethyl siloxane) (PDMS; number‐average molecular weight = 1680) and 3,4′‐diaminodiphenylether (3,4′‐DAPE), in tetrahydrofuran/dimethylacetamide (2/1 v/v). Two synthetic methods for the control of the PAS sequence were used: a one‐step synthesis that presumably gave PAS with a random sequence and the polymerization of 3,4′‐DAPE with a presynthesized dimer, IPC–PDMS–IPC (two‐step synthesis), that presumably gave PAS with an alternating sequence of 3,4′‐DAPE and PDMS segments. In a 1H NMR study of the amide protons of the 3,4′‐DAPE component in PAS, the relative length of the 3,4′‐DAPE segment of randomly sequenced PAS to that of ideally sequenced PAS could be estimated. The glass‐transition temperatures of the 3,4′‐DAPE and PDMS segments of random PAS were 152–234 and ?104 to ?117 °C, respectively, whereas the alternating PAS sequences showed no glass transition for the 3,4′‐DAPE segments. A tensile test indicated that randomly sequenced PAS behaved like a rubber‐toughened material at lower PDMS contents and like a thermoplastic elastomer at higher PDMS contents, whereas the alternately sequenced PAS behaved like a very soft rubber, showing a high value of elongation at the breaking point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 841–852, 2003  相似文献   

20.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号