首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Theta solvent (cyclohexane) shows good agreement with a worm-like chain model and, therefore, gives microscopic information about entropic elasticity. Furthermore, the nanofishing technique can be used for dynamic viscoelastic measurement of single polymer chains. An AFM cantilever is mechanically oscillated at its resonant frequency during the stretching process. This technique enables the estimation of quantitative and simultaneous elongation-dependent changes of stiffness and viscosity of a single chain with the use of a phenomenological model. In this study, the effect of solvent on viscosity in low extension regions reveals that the viscosity is attributed to monomer-solvent friction. Thus, static and dynamic nanofishing techniques are shown to give powerful experimental proofs for several basic questions in polymer physics. The techniques are expected to reveal hidden properties of polymer chains or polymer solutions by any types of macroscopic measurements in the future.  相似文献   

2.
Solution property of hydrogenated polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene triblock copolymer (SEBS copolymer) was studied by using static light scattering and dynamic light scattering for cyclohexane and N‐methylpyrrolidone (NMP) solutions. From the values of dimensionless parameters ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, and solubility parameters, SEBS copolymer proved to exist as single chain close to random coil in nonpolar cyclohexane, whereas aggregate into the core‐shell micelle consisting of poly(ethylene/butylene) (PEB) core surrounded by PS shell in polar NMP. The core‐shell micelle formed in NMP is composed of 65 polymer chains, having three times larger average chain density (d = 0.12 g cm?3) than a single polymer chain (d = 0.04 g cm?3) in cyclohexane. The comparison with the aggregation behaviors in other solvents demonstrated that the aggregate compactness of the copolymer depended largely on solvent polarity, resulting in formation of the highly dense PEB core (Rc = 4.5 nm) and the thick PS shell (ΔR = 22.9 nm) in high‐polar NMP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 588–594, 2010  相似文献   

3.
The simple cubic‐lattice model of polymer chains was used to study the dynamic properties of adsorbed, branched polymers. The model star‐branched chains consisted of f = 3 arms of equal lengths. The chain was modeled with excluded volume, that is, in good solvent conditions. The only interaction assumed was a contact potential between polymer segments and an impenetrable surface. This potential was varied to cover both weak and strong adsorption regimes. The classical Metropolis sampling algorithm was used for models of star‐branched polymers in order to calculate the dynamic properties of adsorbed chains. It was shown that long‐time dynamics (diffusion constant) and short‐time dynamics (the longest relaxation time) were different for weak and strong adsorption. The diffusion of weakly adsorbed chains was found to be qualitatively the same as for free nonadsorbed chains, whereas strongly adsorbed chains behaved like two‐dimensional polymers. The time‐dependent properties of structural elements such as tails, loops, and trains were also determined.

The mean lifetimes of tails, loops, and trains versus the bead number for the chain with N = 799 beads for the case of the weak adsorption εa = −0.3.  相似文献   


4.
Controlled intramolecular collapse of linear polymer chains with crosslinkable groups is an efficient way to prepare single‐chain nanoparticles in the size range of 5–20 nm. However, the nature of the crosslinking group is critical. In present study, poly(styrene‐co‐chloromethyl styrene) [P(St‐co‐CMS)] was synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization and then was converted into polystyrene azide (PS? N3). Polystyrene containing benzoxazine side groups [P(St‐co‐BS)], which can be used as the precusor for the later intramolecular collapse, was obtained from PS? N3 and 3‐(4‐(prop‐2‐ynyloxy)phenyl)‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazine (P‐APPE) via the method of click chemistry. The sub‐20 nm polymeric nanoparticles with well‐defined structure via thermally intramolecular crosslinking of P(St‐co‐BS) were prepared. The structure change from the linear polymers to the single‐chain nanoparticles was confirmed by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The morphology and the dimension of the nanoparticles were characterized by using transmission electron microscope (TEM), atomic force microscopy (AFM), as well as dynamic light scattering (DLS). The results reveal that the size of the nanoparticles can be regulated by changing the molecular weight of the precursors and the amount of pendant benzoxazine groups by the use of controlled polymerization techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1014–1026  相似文献   

6.
Cellulose‐based polymer brushes with variable grafting densities and low dispersity were synthesized by grafting poly(n‐butyl acrylate) (PBA) side chains from cellulose‐derived backbones via ATRP. Esterification of commercially available cellulose acetate with 2‐bromoisobutyryl bromide (2‐BiBB) in NMP provided cellulose‐based macroinitiators averaging one initiation site per double glucose unit. ATRP macroinitiators averaging up to 6 initiation sites per repeating double glucose unit were prepared by acylation of microcrystalline cellulose (MCC) in LiCl/DMAc solvent system with 2‐BiBB. A series of linear macroinitiators with narrow MWD were obtained by fractional precipitation process. The content of initiating sites was determined by elemental analysis. (Meth)acrylate side chains were then grafted from the cellulose‐based macroinitiators. The prepared cellulose‐based polymer brushes showed tunable degradation rates dependent on grafting density of the brush, following two different degradation pathways, either cleavage of the main chain or detachment of the side chains. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2426–2435  相似文献   

7.
The objective of this review is to organize literature data on the thermodynamic properties of salt‐containing polystyrene/poly(ethylene oxide) (PS/PEO) blends and polystyrene‐b‐poly(ethylene oxide) (SEO) diblock copolymers. These systems are of interest due to their potential to serve as electrolytes in all‐solid rechargeable lithium batteries. Mean‐field theories, developed for pure polymer blends and block copolymers, are used to describe phenomenon seen in salt‐containing systems. An effective Flory–Huggins interaction parameter, χeff , that increases linearly with salt concentration is used to describe the effect of salt addition for both blends and block copolymers. Segregation strength, χeffN , where N is the chain length of the homopolymers or block copolymers, is used to map phase behavior of salty systems as a function of composition. Domain spacing of salt‐containing block copolymers is normalized to account for the effect of copolymer composition using an expression obtained in the weak segregation limit. The phase behavior of salty blends, salty block copolymers, and domain spacings of the latter systems, are presented as a function of chain length, composition and salt concentration on universal plots. While the proposed framework has limitations, the universal plots should serve as a starting point for organizing data from other salt‐containing polymer mixtures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1177–1187  相似文献   

8.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

9.
Understanding the nucleation process is very important in growing polymer nanowires as it plays a decisive role in determining the crystal structure and size distribution. Polymer chain conformation determines whether the polymer chains could assemble to nuclei or not. Here, chain conformation and the nucleation process were controlled to grow 3,6‐bis‐(thiophen‐2‐yl)‐N,N′‐bis(2‐decyl‐1‐tetradecyl)‐1,4‐dioxo‐pyrrolo[3,4‐c]pyrrole and thieno[3,2‐b]thiophene (DT‐PDBT‐TT) nanowires. We changed the conformation of DT‐PDBT‐TT in solution and controlled the nucleation process by using a main solvent:cosolvent system. The main solvent was a low boiling point good solvent, and the cosolvent was consisted of two high boiling point solvents with different solubility. In fact, the chain conformation in the pristine solution was changed by choosing different main solvents (with H‐bond, π–π or none interaction with the main chain) and temperatures. The absorption spectrum and TEM images showed that trichloro ethylene (TCE) was the best main solvent because it has H‐bond interaction with the polymer main chain and DT‐PDBT‐TT conformation in it approaching unimer coil conformation, which is beneficial to grow nanowires. Mixed o‐dichlorobenzene (ODCB) and anisole (AS) with different ratios were used to changing the solubility step by step to control nucleation process. Only when marginal cosolvent (ODCB:AS = 1:1) was added, could it decrease the nuclei number and avoided the aggregates simultaneously. As the main solvent evaporated slowly, the nucleation and growth happened, leading to the nanowires formation. The resulting nanowires were about 63 nm in width and one to two microns in length. The width of the DT‐PDBT‐TT structures suggests that the polymer chains are oriented along the fibril axis. Our results indicated that there are two requirements for the nanowire formation, (1) the polymer chain conformation should approach unimer coil; (2) the nucleation density should be optimized, not too much and no aggregation happened. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 833–841  相似文献   

10.
We report viscometric data collected in a Couette rheometry on dilute, single‐solvent polystyrene (PS)/dioctyl phthalate (DOP) solutions over a variety of polymer molecular weights (5.5 × 105Mw ≤ 3.0 × 106 Da) and system temperatures (288 K ≤ T ≤ 318 K). In view of the essential viscometric features, the current data may be classified into three categories: The first concerns all the investigated solutions at low shear rates, where the solution properties are found to agree excellently with the Zimm model predictions. The second includes all sample solutions, except for high‐molecular‐weight PS samples (Mw ≥ 2.0 × 106 Da), where excellent time–temperature superposition is observed for the steady‐state polymer viscosity at constant polymer molecular weights. No similar superposition applies at a constant temperature but varied polymer molecular weights, however. The third appears to be characteristic of dilute high‐molecular‐weight polymer solutions, for which the effects of temperature on the viscosity curve are further complicated at high shear rates. The implications concerning the relative importance of hydrodynamic interactions, segmental interactions, and chain extensibility with increasing polymer molecular weight, system temperature, and shear rate are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 787–794, 2006  相似文献   

11.
RAFT grafted montmorillonite (MMT) clays [i.e., N,N‐dimethyl‐N‐(4‐(((phenylcarbonothioyl)thio)methyl)benzyl)ethanammonium‐MMT (PCDBAB‐MMT) and N‐(4‐((((dodecylthio)carbonothioyl)thio)methyl)benzyl)‐N,N‐dimethylethanammo‐nium‐MMT (DCTBAB‐MMT)] of various loadings were dispersed in styrene (S) monomer and the resultant mixtures emulsified and sonicated in the presence of a hydrophobe (hexadecane) into miniemulsions. The stable miniemulsions thus obtained were polymerized to yield encapsulated polystyrene‐clay nanocomposites (PS‐CNs). The molar mass and polydispersity index (PDI) of the PS‐CNs depended on the amount of RAFT agent in the system, in accordance with the features of the RAFT process. The morphology of the PS‐CNs ranged from partially exfoliated to an intercalated morphology, depending on the percentage clay loading. The thermomechanical properties of the PS‐CNs were better than those of the neat PS polymer, and were dependent on the molar mass, PS‐CN morphology and clay loading. The similarities and differences of the PS‐CNs prepared here by miniemulsion polymerization were compared to those prepared using the same RAFT agents and polymer system by bulk polymerization (as reported by us in a previous article). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7114–7126, 2008  相似文献   

12.
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008  相似文献   

13.
This study aims to use molecular dynamics (MD) simulations of Kremer–Grest (KG) chains to inform future developments of models of entangled polymer dynamics. We perform nonequilibrium MD simulations, under shear flow, for well‐entangled KG chains. We study chains of 512 and 1000 KG beads, corresponding to 8 and 15 entanglements, respectively. We compute the linear rheological properties from equilibrium simulations of the stress autocorrelation and obtain from these data the tube model parameters. Under nonlinear shear flow, we compute the shear viscosity, the first and second normal stress differences, and chain contour length. For chains of 512 monomers, we obtain agreement with the results of Cao and Likhtman (ACS Macro. Lett. 2015, 4, 1376). We also compare our nonlinear results with the Graham, Likhtman and Milner‐McLeish (GLaMM) model. We identify some systematic disagreement that becomes larger for the longer chains. We made a comparison of the transient shear stress maximum from our simulations, two nonlinear models and experiments on a wide range of melts and solutions, including polystyrene (PS), polybutadiene, and styrene–butadiene rubber. This comparison establishes that the PS melt data show markedly different behavior to all other melts and solutions and KG simulations reproduce the PS data more closely than either the GLaMM or Xie and Schweizer models. We discuss the performance of these models against the data and simulations. Finally, by imposing a rapid reversing flow, we produce a method to extract the recoverable strain from MD simulations, valid for sufficiently entangled monodisperse polymers. We explore how the resulting data can probe the melt state just before the reversing flow. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1692–1704  相似文献   

14.
We present a statistical mechanical theory for polymer–solvent systems based on integral equations derived from the polymer Kirkwood hierarchy. Integral equations for pair monomer–monomer, monomer–solvent, and solvent–solvent correlation functions yield polymer–solvent distribution, chain conformation in three dimensions, and scaling properties associated with polymer swell and collapse in athermal, good, and poor solvents. Variation of polymer properties with solvent density and solvent quality is evaluated for chains having up to 100 bonds. In good solvents, the scaling exponent v has a constant value of about 0.61 at different solvent densities computed. For the athermal solvent case, the gyration radius and scaling exponent decrease with solvent density. In a poor solvent, the chain size scales as Nv with the value of the exponent being about 0.3, compared with the mean field value of ⅓. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3025–3033, 1998  相似文献   

15.
A polyimide‐graft‐polystyrene (PI‐g‐PS) copolymer with a polyimide backbone and polystyrene side chains was synthesized by the “grafting from” method using styrene polymerization on a polyimide multicenter macroinitiator via ATRP mechanism. The side chain grafting density z = 0.86 of PI‐g‐PS is rather high for graft‐copolymers synthesized by the ATRP method. Molecular characteristics and solution behavior of PI‐g‐PS were studied in selective solvents using light scattering and viscometry methods. In all solvents, the backbone tends to avoid contact with a poor solvent. To describe the conformation and hydrodynamic properties of PI‐g‐PS macromolecules in thermodynamically good solvents for side chains and PI‐g‐PS, the wormlike spherocylinder model is used. Macromolecules of the studied graft‐copolymer are characterized by high equilibrium rigidities (Kuhn segment length >20 nm). In Θ‐conditions, PI‐g‐PS macromolecules may be modeled by a rigid prolate ellipsoid of revolution with a low asymmetry form and a collapsed backbone as the ellipsoid core. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1539–1546  相似文献   

16.
This article presents the results of capillary break‐up extensional rheometer experiments conducted for semidilute solutions of carboxymethylcellulose sodium salt (Na‐CMC) with degrees of substitution (DS) ranging from 0.62 to 1.04 in distilled water and propylene glycol (PG)/water mixtures. The partial aggregation of Na‐CMC chains with DS < 1 observed in aqueous solutions triggers an increase in apparent extensional viscosity and extension of break‐up time. The rheological properties of Na‐CMC solutions in propylene glycol/water mixture are determined by the solubility of the polymer and the physical crosslinking of chains. The disappearance of the elasto‐capillary regime during the filament thinning of Na‐CMC solutions with DS < 1 in propylene glycol/water mixture was linked to the physical crosslinking of polymer chains. The shape of the extensional viscosity curve for Na‐CMC solutions with DS = 1.04 in PG/water mixture was characteristic for semidilute polymer solutions with a low number of entanglements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1537–1547  相似文献   

17.
The phase behavior of a single polyethylene chain confined between two adsorption walls is investigated by using molecular dynamics simulations. In the free space, it is confirmed in our calculation that the isolated polymer chain exhibits a disordered coil state at high temperatures, and collapses into a condensed state at low temperatures, that is, the coil‐to‐globule transition, and the finite chain length effects are considered since the critical region depends on chain lengths. When the chain is confined between two attractive walls, however, the equilibrium properties not only depend on the chain length but also depend on the adsorption energy and the confinement. Mainly, we focus on the influence of polymer chain length, confinement, and adsorption interaction on the equilibrium thermodynamic properties of the polyethylene chains. Chain lengths of N = 40, 80, and 120 beads, distances between the two walls of D = 10, 20, 30, 50, and 90 Å, and adsorption energies of w = 1.5, 2.5, 3.5, 6.5, and 8.5 kcal/mol are considered here. By considering the confinement–adsorption interactions, some new folding structures are found, that is, the hairpin structure for short chain of N = 40 beads, and the enhanced hairpin or crystal like structures for long chains of N = 80 and 120 beads. The results obtained in our simulations may provide some insights into the phase behaviors of confined polymers, which can not be obtained by previous studies without considering confinement–adsorption interactions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 370–387, 2008  相似文献   

18.
We present a comprehensive experimental study of thermodynamic and rheological properties of semidilute polymer solutions in good solvent. Osmotic pressure and viscosity measurements have been done in several polymer‐solvent systems at different temperatures. A renormalization group technique was applied to analyze the data using de Gennes's blobs model to connect dynamic and conformational quantities. The behavior of polymer systems in the whole range from dilute to semidilute solutions can be satisfactorily described using only a few nonuniversal quantities experimentally determined. An adequate agreement between experiments and theory was found, showing universal behavior with a system‐dependent constant β that does not depend on molecular weight or concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 290–301, 2002  相似文献   

19.
Significant effect of cellulose nanofibers (CNFs) on cure‐induced phase separation in dynamically asymmetric system is reported. An epoxy/polysulfone blends with typical layered structure formation was chosen as the polymer matrix, and morphology evolution and rheological behavior of systems with different nano‐size fiber loadings upon curing reaction were investigated using optical microscopy and rheological measurement. CNF distributed uniformly in the polymer matrix and had good interaction with polymer chains. Curing reaction of epoxy was promoted by CNF, making the system gel and phase separate earlier. Meanwhile, system viscosity was increased with CNF addition, and the movement of polymer chains and component diffusion were constrained, as a result, the structure evolution process was slowed down. The CNF altered the final morphologies, resulting in refined structures with smaller characteristic length scales or even completely change the morphologies from the layered structures to a bicontinuous structure when the CNF concentration reached to a relatively high level. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1357–1366  相似文献   

20.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号