首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

2.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

3.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   

5.
A class of the 9,9‐dioctylfluorene‐alt‐5,7‐bis(thiophen‐2‐yl)‐2,3‐biphenylthieno [3,4‐b]pyrazine copolymeric derivatives (PFO‐3ThPz‐D) attaching additional donor (D) units in the pendant phenyl ring with a D‐A D structure was synthesized and investigated, where the additional D unit is a substituent group of fluorene, carbazole, and triphenylamine (Tpa). Their photovoltaic properties were significantly tuned by these pending donor units. Among these copolymers, the PFO‐3ThPz‐Tpa exhibited the best photovoltaic properties in the bulk heterojunction polymeric solar cells (BHJ‐PSC). The maximum power conversion efficiency (PCE) of 2.09% and the highest circuit current density (Jsc) of 7.91 mA/cm2 were obtained in the cell using a blend of PFO‐3ThPz‐Tpa and PC60BM (1:3, w/w) as active layer, which are 2.5 and 1.8 times higher than those corresponding levels in the other cell using the parent PFO‐3ThPz‐Ph copolymer instead of PFO‐3ThPz‐Tpa as donor, respectively. While PC60BM was replaced by PC70BM, the PFO‐3ThPz‐Tpa‐based BHJ‐PSC exhibited better photovoltaic properties with PCE of 3.08% and Jsc of 10.3 mA/cm2. This work demonstrated that attaching donor units into the D‐A‐based copolymeric side‐chain is a simple and effective method to improve the photovoltaic properties for the resulting copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
An efficient and green reactions of isatins, 3‐amine‐1H‐pyrazole (5‐methyl‐1H‐pyrazol‐3‐amine) and 1,3‐diketone in aqueous medium for the synthesis of novel 1′,7′,8′,9′‐tetrahydrospiro[indoline‐3,4′‐pyrazolo[3,4‐b]quinoline]‐2,5′(6′H)‐dione derivatives were reported in this research. The advantages of this reaction are simple operation, mild‐reaction conditions, wide scope substrate, high yields, and friendly environment. The products were confirmed by IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

7.
The reactions of nine N‐(pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidin‐4‐yl)amidines ( 3 ) with hydroxylamine hydrochloride produced new cyclization products. These were formed via ring cleavage of the pyrimidine component followed by a 1,2,4‐oxadiazole‐forming ring closure to give N‐[2‐([1,2,4]oxadiazol‐5‐yl)thieno[2,3‐b]pyridin‐3‐yl]formamide oximes ( 11 ). Reaction of six N‐(pyrido[2′,3′:4,5]furo[3,2‐d]pyrimidin‐4‐yl)amidines ( 12 ) with hydroxylamine hydrochloride gave similar results. Effects of the newly synthesized compounds on pentosidine formation were also evaluated.  相似文献   

8.
A new benzodithiophene (BDT)‐based polymer, poly(4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene vinylene) (PBDTV), was synthesized by Pd‐catalyzed Stille‐coupling method. The polymer is soluble in common organic solvents and possesses high thermal stability. PBDTV film shows a broad absorption band covering from 350 nm to 618 nm, strong photoluminescence peaked at 545 nm and high hole mobility of 4.84 × 10?3 cm2/Vs. Photovoltaic properties of PBDTV were studied by fabricating the polymer solar cells based on PBDTV as donor and PC70BM as acceptor. With the weight ratio of PBDTV: PC70BM of 1:4 and the active layer thickness of 65 nm, the power conversion efficiency of the device reached 2.63% with Voc = 0.71 V, Isc = 6.46 mA/cm2, and FF = 0.57 under the illumination of AM1.5, 100 mW/cm2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1822–1829, 2010  相似文献   

9.
The ladder‐type nonacyclic arene (bis(thieno[3,2‐b]thieno)cyclopentafluorene (BTTF)) has been designed and synthesized through fusing thienothiophenes with the fluorene core from the synthon of dimethyl 9,9‐dioctyl‐2,7‐bis(thieno[3,2‐b]thiophen‐2‐yl)fluorene‐3,6‐dicarboxylate. With BTTF as the central donor unit, a novel acceptor–donor–acceptor (A‐D‐A) type non‐fullerene small‐molecule acceptor ( BTTFIC ) was prepared with 1,1‐dicyanomethylene‐3‐indanones (IC) as the peripheral acceptor units. The energy level of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BTTFIC locate at ?5.56 and ?3.95 eV, respectively, presenting a low optical band gap of 1.58 eV. Encouragingly, polymer solar cells based on the blends of BTTFIC with both the representative wide‐ and low‐bandgap polymer donors (PBDB‐T, 1.82 eV. PTB7‐Th, 1.58 eV) offer power conversion efficiencies over 8 % (8.78±0.18 % for PBDB‐T: BTTFIC and 8.18±0.29 % for PTB7‐Th: BTTFIC ). These results highlight the advantage of ladder‐type BTTF on the preparation of nonfullerene acceptors with extended conjugated backbones.  相似文献   

10.
We have synthesized six p‐type copolymers, CPDT ‐ co ‐ TPADCN , CPDT ‐ co ‐ TPADTA , CPDT ‐ co ‐ TPATCN , CPDT ‐ co ‐ DFADCN , CPDT ‐ co ‐ DFADTA , and CPDT ‐ co ‐ DFATCN , consisting of a cyclopenta[2,1‐b:3,4‐b′]dithiophene (CPDT) unit and an organic dye in an alternating arrangement. Triphenylamine (TPA) or difluorenylphenyl amine (DFA) units serve as the electron donors, whereas dicyanovinyl (DCN), 1,3‐diethyl‐2‐thiobarbituric acid, or tricyanovinyl (TCN) units act as the electron acceptors in the dyes. The target polymers were prepared via Stille coupling, followed by postfunctionalization to introduce the electron acceptors to the side chains. Because of the strongest withdrawing ability of TCN acceptor to induce efficient intramolecular charge transfer, CPDT ‐ co ‐ TPATCN and CPDT ‐ co ‐ DFATCN exhibit the broader absorption spectra covering from 400 to 900 nm and the narrower optical band gaps of 1.34 eV. However, the CPDT ‐ co ‐ TPATCN :PC71BM and CPDT ‐ co ‐ DFATCN :PC71BM based solar cells showed the power conversion efficiencies (PCEs) of 0.22 and 0.31%, respectively, due to the inefficient exciton dissociation. The DFA‐based polymers possess deeper‐lying HOMO energy levels than the TPA‐based polymer analogues, leading to the higher Voc values and better efficiencies. The device based on CPDT ‐ co ‐ DFADTA :PC71BM blend achieved the best PCE of 1.38% with a Voc of 0.7 V, a Jsc of 4.57 mA/cm2, and a fill factor of 0.43. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
In order to improve the solution processability of 4,7‐bis(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT)‐based polymers, novel donor–acceptor polymer PTOBDTDTBT containing DTBT and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) with conjugated side chain is designed and synthesized with narrow band gap 1.67 eV and low lying HOMO energy level −5.4 eV. The blend film of PTOBDTDTBT and PC71BM exhibits uniform and smooth film with root‐mean‐square (RMS) surface roughness 1.15 nm because of the excellent solubility of PTOBDTDTBT when six octyloxy side chains are introduced. The hole mobility of the blend film is measured to be 4.4 × 10−5 cm2 V−1s−1 by the space‐charge‐limited current (SCLC) model. The optimized polymer solar cells (PSCs) based on PTOBDTDTBT /PC71BM exhibits an improved PCE of 6.21% with Voc = 0.80 V, Jsc = 11.94 mA cm−2 and FF = 65.10%, one of the highest PCE in DTBT containing polymers.

  相似文献   


13.
2,3‐Dihydro‐1,3,4‐thiadiazoles, pyrazoles, pyrazolo[3,4‐d]pyridazines, thieno[2,3‐b]pyridines, pyrim‐idino[4′,5′:4,5]thieno[2,3‐b]pyridines and pyrrolo[3,4‐d]pyrazoles were obtained in a good yields by treatment of hydrazonoyl halides with each of alkyl carbodithioates, 3‐(dimethylamino)‐1‐naphtho[1,2‐d]furan‐2‐ylprop‐2‐en‐1‐one and N‐arylmalemides.  相似文献   

14.
For the first time, tetracyclic compounds, namely, furo[2′,3′:3,4]cyclohepta[1,2‐b]indoles were synthesized by recyclization of ortho‐substituted aryldifurylmethanes containing tert‐butyl groups at C5 positions of the furan rings. It was shown that [2‐(benzoylamino)phenyl]bis(5‐tert‐butyl‐2‐furyl)methanes 12 are transformed into tetracycles 15 at room temperature under treatment with POCl3 in benzene solution containing some drops of water. The reaction proceeds via the intermediate formation of 1‐benzoylamino‐3‐(5‐tert‐butyl‐2‐furyl)‐2‐(4,4‐dimethyl‐3‐oxopentyl)indoles 14 which can be isolated from the reaction mixture. The method is very simple but its application is restricted due to side reactions if electron‐releasing groups are present in 12 . On the other hand, the decrease of electron density on furan ring in the starting compounds (for example, the use of [2‐X‐phenyl]difurylmethanes (where X = tosylamino or hydroxy group) prevents cyclization under the studied reaction conditions. As a result, corresponding ketones are formed as products of recyclization. J. Heterocyclic Chem., (2011).  相似文献   

15.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

16.
Novel derivatives of benzo[h ]thieno[2,3‐b ]quinoline‐9‐yl(aryl)methanone were synthesized in good yield and short reaction times by reaction of 2‐mercaptobenzo[h ]quinoline‐3‐carbaldehyde with phenacyl bromides under basic conditions. All compounds were characterized using Fourier transform infrared, 1H nuclear magnetic resonance and 13C nuclear magnetic resonance, spectral data, and elemental analysis.  相似文献   

17.
A novel D–A1–D–A2 copolymer denoted as P1 containing two electron withdrawing units based on benzothiadiazole (BT) and 9‐(2‐octyldodecyl)?8H‐pyrrolo[3,4‐b] bisthieno[2,3‐f:3′,2′‐h]quinoxaline‐8,10(9H)–dione (PTQD) units was synthesized and characterized. The resulting copolymer exhibits a broad‐absorption spectrum, relatively deep lying HOMO energy level (?5.44 eV) and narrow optical bandgap (1.50 eV). Bulk heterojunction (BHJ) polymer solar cells (PSCs) based on P1 as donor and PC71BM as acceptor with optimized donor to acceptor weight ratio of 1:2 and processed with DIO/CB solvent showed good photovoltaic performance with power conversion efficiency of 6.21% which is higher than that of the device processed without solvent additive (4.40%). The absorption and morphology investigations of the active layers indicated that structural and morphological changes were induced by the solvent additive. This higher power conversion efficiency could be mainly attributed to the absorption enhancement and improved charge transported in the active layer induced by the better nanoscale morphology of the active layer. This study demonstrated that a copolymer with two different acceptor moieties in the backbone may be promising candidate as donor copolymer for solution processed BHJ PSCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 155–168  相似文献   

18.
A novel dianhydride monomer, 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]pyromellitic dianhydride (12FPMDA), was synthesized via a three‐step process: (1) the preparation of 3,5‐bis(trifluoromethyl)benzene boronic acid (6FBB) and 3,6‐dibromo‐1,2,4,5‐tetramethylbenzene (2B4MB) via Grignard and bromination reactions, respectively; (2) the Suzuki cross‐coupling reaction of 6FBB and 2B4MB, resulting in 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]tetramethylbenzene (12F4MB); and (3) the oxidation and cyclodehydration of 12F4MB to afford 12FPMDA. 12FPMDA was then characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and a melting‐point apparatus, and it was used to prepare polyimides with aromatic diamines such as 1,1‐bis(4‐aminophenyl)‐2,2,2‐trifluoroethane and 4,4′‐diaminodiphenylether. Polyimides were synthesized via a two‐step process: (1) the preparation of poly(amic acid) in p‐chlorophenol with isoquinoline and (2) solution imidization at the reflux temperature for 12 h. They were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry. The resulting polyimides were characterized by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, and their solubility, solution viscosity, water absorption, coefficients of thermal expansion (CTEs), and dielectric constants were also evaluated. The polyimides exhibited excellent solubility even in acetone and toluene, high glass‐transition temperatures (>311 °C), good thermal stability (>518 °C in air), and well‐controlled molecular weights (19,000–21,000 g/mol). They also provided low CTEs (35–50 ppm/°C), water absorption (1.26–1.35 wt %), and dielectric constants (2.49–2.52). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4217–4227, 2002  相似文献   

19.
The carbodiimides 5 , obtained from reactions of iminophosphorane 4 with aromatic isocyanates, reacted with amines, phenols or ROH to give 2‐substituted 5,6,7,8‐tetrahydropyrido[4′,3′:4,5]thieno[2,3‐d]‐pyrimidin‐4(3H)‐one 7 in the presence of catalytic amount of sodium alkoxide or solid potassium carbonate in satisfactory yields.  相似文献   

20.
Pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (DPPD)‐based large band gap polymers, P(BDT‐TDPPDT) and P(BDTT‐TDPPDT), are prepared by copolymerizing electron‐rich 4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) unit with novel electron deficient 2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (TDPPDT) unit. The absorption bands of polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) cover the region from 300 to 600 nm with an optical band gap of 2.11 eV and 2.04 eV, respectively. The electrochemical study illustrates that the highest occupied/lowest unoccupied molecular orbital energy levels of P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) are ?5.39 eV/?3.28 eV and ?5.44 eV/?3.40 eV, respectively. The single layer polymer solar cell (PSC) fabricated with a device structure of ITO/PEDOT:PSS/P(BDT‐TDPPDT) or P(BDTT‐TDPPDT):PC70BM+DIO/Al offers a maximum power conversion efficiency (PCE) of 6.74% and 6.57%, respectively. The high photovoltaic parameters such as fill factor (~72%), open circuit voltage (Voc, ~0.90 V), incident photon to collected electron efficiency (~76%), and PCE obtained for the PSCs made from polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) make them as promising large band gap polymeric candidates for PSC application. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3564–3574  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号