首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
A telechelic thermoresponsive polymer, α‐amino‐ω‐thiol‐poly(N‐isopropylacrylamide) (H2N‐PNiPAM‐SH), is used as the polymeric glue to assemble gold nanoparticles (AuNPs) around gold nanorods (AuNRs) into a satellite structure. Prepared by reversible addition‐fragmentation chain transfer polymerization followed by hydrazinolysis, H2N‐PNiPAM‐SH is able to interlink the two types of the gold building blocks with the thiol‐end grafting on AuNRs and the amine‐end coordinating on the AuNP surface. The density of the grafted AuNPs on AuNRs can be tuned by adjusting the molar ratio between AuNPs and AuNRs in the feed. The resulted satellite‐like assembly exhibits unique optical property that was responsive to temperature change.  相似文献   

2.
The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100–400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525–533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35?±?5 nm, AuNP2 15?±?5 nm, AuNP3 30?±?5 nm, and AuNP4 30?±?5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1x/200, ??17.93?±?1.02 mV; AuNP2-L-1x/200, ??21.63?±?0.70; AuNP3-L-1x/200, ??14.54?±?0.90; AuNP3-L-1x/200 ??13.77?±?0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1x/200 or 1x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling.
Graphical abstract Agglomeration behavior of gold nanoparticles before and after lipid capping
  相似文献   

3.
The controlled aggregation of copper oxide nanoparticles (CuO NPs) induced by a multitopic carboxylic acid allows the formation of mesoporous structures with high surface area, in the order of 100 m2 g?1, as demonstrated herein. The main novelty in the designed process is the use, as a previous step, of a sacrificeable monotopic carboxylate ligand for capping the CuO NPs. This step avoids the often observed unwanted behavior of uncontrolled aggregation and material densification. The monotopic 3,6,9‐trioxadecanoate (HTODA) is used as the capping agent to prepare TODA@CuO, a starting material that forms colloidal dispersions in ethanol. For NPs self‐assembly, the bulky tricarboxylic acid 4,4′,4′′,‐benzene‐1,3,5‐triyl‐tris(benzoic acid) (H3BTB) is chosen as an efficient interlinker in the controlled aggregation. The obtained mesoporous network shows a considerable thermal stability, retaining ≈70% of its specific surface area after annealing at 300 °C under vacuum. Thermal treatment involves TODA capping agent elimination, but not BTB linker. The simultaneous reduction of the CuO NPs to a Cu2O/Cu mixture is observed.  相似文献   

4.
The study aims to compare different approaches and efficacies during the biological production of nanoparticles (NPs). Gold nanoparticles (AuNPs) are produced by Fusarium oxysporum at two different temperatures. One flask is incubated at 37 °C (“Common”) and the other is directly heated for 5 min at 80 °C (“Heat-treated”). Obtained AuNPs are analyzed and compared by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Graphite furnace atomic absorption spectroscopy (GF-AAS) is used to determine the particle concentration after the AuNPs production. The AuNPs prepared by both (the Common and the Heat-treated) methods exhibit maximum absorption peaks at 541 and 528 nm, respectively, and have round shapes and sizes of less than 50 nm. Their zeta potential is about −28 mV. GF-AAS shows that the efficiency of AuNP production in Common- and Heat-treated samples is equal, between 65% and 68%. Since the Heat-treated sample shows a better size distribution, the use of higher temperature and shorter time period is preferable for the bioproduction of AuNPs. It seems that shortening the time for the production of AuNPs prevents the formation of larger NPs.  相似文献   

5.
The adsorption of cationic and neutral R6G molecules on Au nanoparticles was elucidated by surface enhanced Raman scattering (SERS). The steric hindrance at hydroethyl amino (‐N(H)Et) groups in R6G was evidenced by the observation that R6G+ adsorb on as‐prepared gold nanoparticles (AuNPs) only with electrostatic forces, in contrast to the electrostatic and chemical adsorption of R123+ with dihydro amino (‐NH2) groups on as‐prepared AuNPs. Large steric hindrance at the amino groups in R6G yielded saturated coverage of 700 molecules/AuNP for R6G+ significantly fewer than 1000 molecules/AuNP for R123+. In addition, neutral R6G0 on AuNPs showed markedly enhanced peaks at 1200–1600 cm−1, which were not observed in Raman spectra of R6G0 in bulk solution, and also in SERS of R6G+ on AuNPs. These bands are attributed to vibrational modes of an outer phenyl ring and ethyl amino groups, which are vertical to a xanthene plane, on the basis of theoretical analysis of molecular vibrations. Thus, Raman scattering of these bands is enhanced under an inclined orientation of R6G0 molecules chemisorbed on AuNPs via lone pair electrons at amino groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We report on the use of poly(allylamine) hydrochloride (PAH) as a reducing agent for the controlled formation of gold nanoparticles (AuNPs) in the size range of 5–50 nm. The formation of AuNPs using this polymer matrix allows for the AuNPs to be imbedded in the polymer matrix, once formed. The kinetics of AuNP formation are shown to be pseudo first-order in [HAuCl4] at room temperature. The kinetics of AuNP formation are controlled by the ratio of reducing agent to HAuCl4 as well as the overall concentration of the PAH and HAuCl4. Additionally, at low PAH:HAuCl4 mole ratios, the plasmon resonance wavelength can be controlled through the ratio of the reactants. This plamson resonance shift is shown to be related to AuNP size by means of TEM imaging data on the AuNPs.  相似文献   

7.
Nanoparticle (NP) surfaces are modified immediately by the adsorption of proteins when injected into human blood, leading to the formation of a protein corona. The protein‐coated NPs may be recognized by living cells. Furthermore, the adsorption of serum proteins is a continuous competitive dynamic process that is the key to exploring the bioapplication and biosafety of NPs. In this study, the competitive dynamic adsorption of some serum proteins on gold nanoparticles (AuNPs) is investigated by fluorescence emission, dynamic light scattering, and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Serum proteins with different AuNPs binding affinities are used to address the competitive dynamic process of protein‐AuNP interactions in vitro. The results show that more abundant serum proteins, such as human serum albumin, adsorb on AuNPs first, and then the higher binding affinity and lower concentration serum proteins, such as fibrinogen (FIB), replace the abundant and lower binding affinity serum proteins. However, the lower binding affinity serum proteins, such as hemoglobin, do not replace the higher binding affinity proteins from the protein‐AuNP conjugates. During the dynamic exchange process, the larger the binding affinities difference between two proteins, the faster the exchange rate. This dynamic exchange process usually takes longer in inner protein‐AuNP conjugates (hard corona) than the external surface of protein‐AuNP conjugates (soft corona).  相似文献   

8.
We study the adsorption behaviors of rhodamine dyes on gold nanoparticles (Au NPs) depending on their surface charges. Rhodamine 6G (Rh6G) dye is tested comparatively for positively and negatively charged Au NPs prepared by the reduction of chitosan and citric acid, respectively. The adsorption of Rh6G is found to be weaker on the positively charged Au NPs, whereas more substantial aggregation is found on negatively charged Au NPs. An increase in the concentration of Au NPs enhances the surface‐enhanced Raman scattering (SERS) intensities only for the Au(−) NPs, whereas the Au(+) NPs do not exhibit any strong SERS signals. Our findings suggest that SERS and reciprocal fluorescence measurements of Rh6G can be used to estimate the surface charges and atomic percentages of Au NPs less than ∼5 ppm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of the sample orientation on the effective value of the hydrostatic piezoelectric coefficients d h (i) of Sn2P2S6 crystals has been studied. The hydrostatic piezoelectric coefficients d h (1) and d′ h (3) , were measured, d h (1) =(244±3) pC/N and d′ h (3) =(92±1) pC/N. The hydrostatic piezoelectric coefficient d h (3) for orthogonal axis system was calculated to be d h (3) =(87±2) pC/N. The, optimal orientation of the sample has been found as (Xy l)−20°-cut. Maximal value of the effective hydrostatic piezoelectric coefficient d h (1) equals 260 pC/N. Double rotated samples were also studied. The orientation of the samples insensitive to the pressure has been found. The theoretical mean value of hydrostatic piezoelectric coefficient (d h ) mean corresponding to randomly oriented Sn2P2S6 grains in a poled composite has been calculated to be (d h ) mean =136 pC/N.  相似文献   

10.
Various C‐doped metal oxide nanoparticles (NPs) are prepared from metal nitrates in poly‐(methyl vinyl ether‐co‐maleic anhydride) (PVM/MA) nanoreactors. The loading of metal nitrates in the nanoreactors is realized via a process of solution‐enhanced dispersion by supercritical CO2. When the temperature exceeds the thermal decomposition temperature of the nitrates, the nitrates‐loaded nanoreactors transform into C‐doped metal oxide NPs. ZnO, NiO, and Co3O4 NPs as representative of the doped oxides are successfully fabricated. A precise control over the doping concentration and doping site in the lattice is achieved by changing the mass ratio between PVM/MA and metal nitrate. The controllable carbon doping avoids undesirable aggregation of carbon species and metal oxide NPs, endows the NPs with broad and strong absorption bands in the visible light region, and creates channels for separation of photo‐generated electrons and holes. In this regard, the resultant C‐doped metal oxide NPs exhibit excellent photocatalytic, photo‐induced antibacterial, and photothermal performances.  相似文献   

11.
Although nanoparticles (NPs) can be carefully engineered to have maximal stability and functionality desirable for use in diverse applications, they are generally not suitable for long‐term storage in solution. It is also difficult to store NPs in a dry state because dried NPs generally become aggregated and cannot easily be redispersed. Thus, a new strategy allowing long‐term storage of NPs with high stability, redispersibility, and functionality is highly demanded. By passivating the 13 nm gold nanoparticle (AuNP) surface with stabilizing agents and treating a paper substrate with both bovine serum albumin and sucrose after coating with a hydrophobic polyvinyl butyral layer, it is possible to fully redisperse (≈100%) dried AuNPs with colloidal stability comparable to that of as‐prepared AuNPs. Furthermore, AuNPs physically stabilized with polyvinylpyrrolidone can react with thiol‐containing compounds, such as 1,4‐dithiothreitol (DTT). Taking advantage of the oxidation reaction of hypochlorous acid with DTT, it is possible to demonstrate a paper‐based colorimetric sensor for detection of residual chlorine in water. Since this strategy is applicable to large‐sized AuNPs (30–90 nm), silver NPs, oleic acid‐capped magnetic NPs, and cetrimonium bromide‐passivated gold nanorods, it can be used for diverse NPs requiring long‐term storage for many applications.  相似文献   

12.
Demokrit – Planck A branch of physics exists closely linked to the constant h and associated with atomism. It is this h-physics that Planck originated. But atomism like existence of localized, charged particles with different masses does not follow from this physics, especially the charge quant. Hence Demokrit asserted more then quantum physics is competent to answer.  相似文献   

13.
We measure the flow of water through mixed packings of glass spheres and soft swellable hydrogel grains, at constant sample volume. Permeability values are obtained at constant sample volume and at porosities smaller than random close packing, for different glass bead diameters D and for variable gel grain diameter d, as controlled by the salinity of the water. The gel content is also varied. We find that the permeability decays exponentially in n(D/d ) b , where n = N gel/N glass is the gel to glass bead number ratio and b is approximately 3. Therefore, flow properties are determined by the volume fraction of gel beads. A simple model based on the porosity of overlapping spheres is used to account for these observations.  相似文献   

14.
Conjugates formed by antibody adsorption to gold nanoparticles (AuNP) have found extensive utilization in immunoassays due to the high surface area and interesting optical and electronic properties of the nanomaterials. Nevertheless, the mechanism of formation of antibody‐AuNP conjugates and their antigen binding characteristics have not been sufficiently explored in terms of specificity and consequent clinical applicability. Dynamic light scattering and related techniques have been successfully employed to detect antigen binding to antibody‐AuNP complexes. Here, a range of different techniques from the bionanotechnology realm have been applied to obtain a detailed picture of a competitive immunoassay for malaria antigen detection, based on fluorescence‐quenching by AuNPs. Both agarose gel electrophoresis and differential centrifugal sedimentation (DCS) analyses provide binding constants in the same order of magnitude, for antibody binding to AuNP and for antigen binding to antibody‐AuNP conjugates. Both techniques are also able to reveal inhibition of antigen binding in the presence of a major blood plasma protein, transferrin (via competitive binding). DCS is further used to show inhibition of the binding of the antigen in the presence of human plasma, a realistic testing condition, of high relevance to the implementation of immunoassays at the clinical level.  相似文献   

15.
The Raman spectra of sol–gel derived Co‐doped ZnO nanoparticles (NPs) in the spectral range 100–1500 cm−1 were investigated. In the sol–gel method, three different series of Co‐doped ZnO particles, i.e. Zn1−xCoxO (x = 0.05, 0.10, 0.15, and 0.20), were obtained using three different starting precursors, viz. cobalt chloride hexahydrate, cobalt acetate tetrahydrate, and cobalt nitrate hexahydrate, respectively. It has been observed that cobalt acetate is a better precursor in comparison to cobalt chloride and cobalt nitrate to obtain single‐phase Co‐doped ZnO NPs. As for cobalt acetate‐derived NPs, no hidden secondary phase of Co3O4 was observed for the lower (x = 0.05) Co concentration. The Fröhlich interaction associated with the longitudinal modes was found to be destroyed with increasing Co concentration due to structural disorder and defects induced by the dopant. In addition to ZnO and Co3O4 vibrational modes, a few additional modes near 550 and 715 cm−1 were also observed in all cases, which could be attributed to the modes due to Co doping in ZnO. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
To characterize the environmental transport and health risks of CeO2 nanoparticles (NPs), it is important to understand their aggregation behavior. This study investigates the aggregation kinetics of CeO2 NPs in KCl and CaCl2 solutions using time-resolved dynamic light scattering (TR-DLS). The initial hydrodynamic radius of CeO2 NPs measured by DLS was approximately 95 nm. Attachment efficiencies were derived both from aggregation data and predictions based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The deviations of the DLVO predictions were corrected by employing the extended DLVO (EDLVO) theory. The critical coagulation concentration (CCC) of CeO2 NPs at pH = 5.6 is approximately 34 mM for KCl and 9.5 mM for CaCl2. Furthermore, based on the EDLVO theory and the von Smoluchowski’s population balance equation, a model accounting for diffusion-limited aggregation (DLA) kinetics was established. For the reaction-limited aggregation (RLA) kinetics, a model that takes fractal geometry into account was established. The models fitted the experimental data well and proved to be useful for predicting the aggregation kinetics of CeO2 NPs.  相似文献   

17.
A direct and simple inductively coupled plasma mass spectroscopy (ICP-MS) method for the determination of gold nanoparticles (AuNP) with different particle sizes ranging from 5 to 20 nm and suspended in aqueous solutions is described. The results show no significant difference compared to the determination of the same AuNPs after digestion, as claimed by the literature. The obtained limit of quantification of the method is 0.15 μg/L Au(III) that corresponds to 4.40 × 109 AuNP/L, considering spherical AuNPs 15 nm sized. Spike recovery experiments have shown that the sample matrix is a significant factor influencing the accuracy of the measurement. Spike recoveries from 93% to 95% are found for AuNP samples prepared in trisodium citrate, while for deionized H2O a spike recovery of around 80% was obtained. The sample preparation mode along with the ICP-MS parameters have been optimized and found to be crucial so as to achieve the required accuracy for the direct quantification of AuNP suspensions. The effect of the nanoparticle size upon the ICP-MS signal also was studied, and only significant differences due to the chemical environment and not to the AuNPs size were found.  相似文献   

18.
Reaction of 10 nm gold nanoparticles (AuNPs) with a thiol-functionalized bipyridine copper(II) complex, Cu[(N-(6-mercaptohexyl)-2,2′-bipyridinyl-5-carboxamide)]Cl2 (3), and (1-mercaptohex-6-yl)tri(ethylene glycol) (5) in different ratios resulted in mixed monolayer modified NPs with varying surface coverage of capping agent. The copper complex modified NPs were used for surface plasmon resonance (SPR) promoted homogeneous catalysis applied to the hydrolysis of the nerve agent methyl parathion (MeP) at pH 8.0. Low power green laser (532 nm) irradiation of solutions of modified AuNPs with MeP resulted in significant increase in the rate of phosphate ester hydrolysis which could not be attributed to a thermal process. Ratios of initial rates (laser/dark) at high substrate concentrations of MeP as a function of copper catalyst coverage were determined. A possible mechanism for catalytic enhancement involving dissociation of catalytically inactive hydroxy-bridged Cu(II) dimer is discussed.  相似文献   

19.
Amphiphilic gold nanoparticles (AuNPs) functionalized with mixed monolayers consisting of hydrophobic and hydrophilic ligands find widespread applications in biosensing, drug delivery, and bioimaging. One important aspect of amphiphilic AuNPs in such applications is the tuning of the surface properties of these AuNPs by modifying the composition of the ligands. In this study, well-dispersed AuNPs as individuals with mixed monolayers of hydrophobic and hydrophilic ligands were synthesized and the ratios of hydrophilic and hydrophobic ligands on the AuNP surfaces with varying ligand lengths were investigated by electrostatic titration. We demonstrated that longer hydrophobic ligands have higher affinity for the AuNP surface, and that the relative ligand length plays an important role in determining the maximum hydrophobic coverage on the AuNP surface at which the ratio of the amount of hydrophobic to that of hydrophilic ligands on the AuNP surface is the largest, for AuNPs to remain as individuals. We expect that the AuNPs synthesized with diverse ratios of hydrophobic and hydrophilic ligands on the surface can be useful in biological applications.
Graphical abstract ?
  相似文献   

20.
Elastic, strength, electronic properties and vibrational spectra of Ne@C60 (I h) in its ground electronic state (X 1Ag) were investigated with density functional theory at B3PW91/6-31G level via structure distortions. The elastic properties were obtained from the potential energy curves (PECs) in all of the five independent distortional directions of the molecule with symmetries of 1. D 5d, 2. D 3d, 3. D 2h, 4. C 2h(1) and 5. C 2h(2). PECs were examined where the structure of Ne@C60 was destroyed. The necessary energies to destroy the structure were thus obtained, which illuminated the stability of Ne@C60. PECs were found to be anisotropic and were accurately fitted to polynomials. Elongations in the direction of D 5d and compression in D 2h encountered potential energy surface cross-linkages, which might be considered as a single electron pump for further application in the design of single electron devices. Time-dependent B3PW91/6-31G analysis predicted significant electronic spectra changes associated with structure distortions. Similarities and differences of the properties were compared with those in C60 and He@C60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号